论文标题

S2CGAN:标签较少的有条件gan的半监督培训

S2cGAN: Semi-Supervised Training of Conditional GANs with Fewer Labels

论文作者

Chakraborty, Arunava, Ragesh, Rahul, Shah, Mahir, Kwatra, Nipun

论文摘要

生成的对抗网络(GAN)在学习复杂的高维真实单词分布并生成逼真的样本方面非常成功。但是,它们提供了对生成过程的有限控制。有条件的gans(CGAN)提供了一种机制,可以通过在用户定义的输入上调节输出来控制生成过程。尽管培训甘斯仅需要无监督的数据,但培训CGAN需要标记的数据,这可能非常昂贵。我们为CGAN的半监督培训提供了一个框架,该框架利用稀疏标签来学习条件映射,同时利用大量的无监督数据来学习无条件的分布。我们证明了我们在多个数据集和不同条件任务上的方法的有效性。

Generative adversarial networks (GANs) have been remarkably successful in learning complex high dimensional real word distributions and generating realistic samples. However, they provide limited control over the generation process. Conditional GANs (cGANs) provide a mechanism to control the generation process by conditioning the output on a user defined input. Although training GANs requires only unsupervised data, training cGANs requires labelled data which can be very expensive to obtain. We propose a framework for semi-supervised training of cGANs which utilizes sparse labels to learn the conditional mapping, and at the same time leverages a large amount of unsupervised data to learn the unconditional distribution. We demonstrate effectiveness of our method on multiple datasets and different conditional tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源