论文标题

一个简单的规范网络近似于皮质中的本地非赫比亚学习

A simple normative network approximates local non-Hebbian learning in the cortex

论文作者

Golkar, Siavash, Lipshutz, David, Bahroun, Yanis, Sengupta, Anirvan M., Chklovskii, Dmitri B.

论文摘要

为了指导行为,大脑从感觉器官流出的高维数据中提取相关特征。神经科学实验表明,皮质神经元对感觉输入的处理是由提供上下文和与任务相关信息的指导性信号调节的。在这里,采用规范方法,我们将这些指导性信号建模为指导馈电数据投影的监督输入。从数学上讲,我们从降低秩回归(RRR)目标函数的家族开始,其中包括降级(最小)均方根误差(RRMSE)和规范相关性分析(CCA),并得出了新颖的离线和在线优化算法,我们称之为Bio-RRR。在线算法可以由神经网络实施,神经网络的突触学习规则类似于钙高原潜在的依赖性可塑性。我们详细介绍了如何将钙高原电位解释为反向传播误差信号。我们证明,尽管仅依靠生物学上合理的本地学习规则,但我们的算法在RRMSE和CCA的现有实施中竞争性地发挥了作用。

To guide behavior, the brain extracts relevant features from high-dimensional data streamed by sensory organs. Neuroscience experiments demonstrate that the processing of sensory inputs by cortical neurons is modulated by instructive signals which provide context and task-relevant information. Here, adopting a normative approach, we model these instructive signals as supervisory inputs guiding the projection of the feedforward data. Mathematically, we start with a family of Reduced-Rank Regression (RRR) objective functions which include Reduced Rank (minimum) Mean Square Error (RRMSE) and Canonical Correlation Analysis (CCA), and derive novel offline and online optimization algorithms, which we call Bio-RRR. The online algorithms can be implemented by neural networks whose synaptic learning rules resemble calcium plateau potential dependent plasticity observed in the cortex. We detail how, in our model, the calcium plateau potential can be interpreted as a backpropagating error signal. We demonstrate that, despite relying exclusively on biologically plausible local learning rules, our algorithms perform competitively with existing implementations of RRMSE and CCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源