论文标题
关于Banach代数的矩阵的指数分解
On Exponential Factorizations of Matrices over Banach Algebras
论文作者
论文摘要
我们研究了在Unital复杂的Banach代数上可逆矩阵的指数分解。特别是,我们证明,在封闭边界的黎曼表面上,所有可逆转矩阵都具有全态函数代数中的条目,可以写成该代数上两个矩阵指数的产物。我们的结果以$ 2 $ 2 $矩阵在[KS]和[L]的早期证明的结果扩展了相似的结果。
We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over this algebra. Our result extends similar results proved earlier in [KS] and [L] for $2\times 2$ matrices.