论文标题
掺杂轮廓工程的三重异质结TFET具有12 nm身体厚度
Doping profile engineered triple heterojunction TFETs with 12 nm body thickness
论文作者
论文摘要
已经提出了三重杂结(THJ)TFET来解决TFET的低电流挑战。但是,THJ-TFET的设计空间受到设备尺寸和材料界面的制造挑战的限制。这项工作表明,具有12 nm身体厚度的原始THJ-TFET设计性能较差,因为其亚阈值秋千为50 mV/dec,并且电流仅为6 $μA/μm$。为了提高性能,THJ-TFET的掺杂曲线是为提高共振隧道效率的设计而设计的。拟议的THJ-TFET设计显示,在四个排水管电流的四个顺序上的次阈值摇摆为40 mV/dec,并且在325 Ua/um的电流上为325 UA/UM,VGS = 0.3V。由于THJ-TFET具有多个量子井和隧道连接中的多个量子孔和材料界面,因此此类设备中的量子传输模拟很复杂。在这项工作中采用了最新的模式空间量子传输模拟,包括热化和散射的效果,以优化THJ-TFET设计。
Triple heterojunction (THJ) TFETs have been proposed to resolve the low ON-current challenge of TFETs. However, the design space for THJ-TFETs is limited by fabrication challenges with respect to device dimensions and material interfaces. This work shows that the original THJ-TFET design with 12 nm body thickness has poor performance, because its sub-threshold swing is 50 mV/dec and the ON-current is only 6 $μA/μm$. To improve the performance, the doping profile of THJ-TFET is engineered to boost the resonant tunneling efficiency. The proposed THJ-TFET design shows a sub-threshold swing of 40 mV/dec over four orders of drain current and an ON-current of 325 uA/um with VGS = 0.3 V. Since THJ-TFETs have multiple quantum wells and material interfaces in the tunneling junction, quantum transport simulations in such devices are complicated. State-of-the-art mode-space quantum transport simulation, including the effect of thermalization and scattering, is employed in this work to optimize THJ-TFET design.