论文标题

p(x) - 拉普拉斯方程的解决方案的Hölder连续性,右侧一侧

Hölder continuity for the solutions of the p(x)-Laplace equation with general right-hand side

论文作者

Lyaghfouri, A.

论文摘要

我们表明,quasilinear椭圆方程的有界解决方案$δ_{p(x)} u = g+div(\ textbf {f})$是本地hölder连续的,前提是函数$ g $和$ g $和$ \ textbf {f} $在合适的lebesgue空间中。

We show that bounded solutions of the quasilinear elliptic equation $Δ_{p(x)} u=g+div(\textbf{F})$ are locally Hölder continuous provided that the functions $g$ and $\textbf{F}$ are in suitable Lebesgue spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源