论文标题

通过线性不变的嵌入来学习对应学习

Correspondence Learning via Linearly-invariant Embedding

论文作者

Marin, Riccardo, Rakotosaona, Marie-Julie, Melzi, Simone, Ovsjanikov, Maks

论文摘要

在本文中,我们提出了一条完全可区分的管道,用于估计3D点云之间的准确密集对应关系。提出的管道是功能地图框架的扩展和概括。但是,我们没有在该域中几乎所有以前的作品中使用Laplace-Beltrami本征函数,而是证明从数据中学习基础可以提高鲁棒性并在挑战性设置中提高准确性。我们将基础解释为嵌入到更高维空间中的一种学习。遵循功能映射范式,该嵌入空间中的最佳转换必须是线性的,我们提出了一个单独的体系结构,旨在通过学习最佳描述函数来估算转换。这导致了第一个基于端到端的端到端功能地图方法方法,其中基于数据和描述符都是从数据中学到的。有趣的是,我们还观察到,学习一个\ emph {canonical}嵌入会导致更糟的结果,这表明将额外的线性自由度留在嵌入网络上可以更加稳健,从而使光线也散发出了先前方法的成功。最后,我们证明我们的方法达到了最新的方法,从而挑战了非刚性3D点云对应应用程序。

In this paper, we propose a fully differentiable pipeline for estimating accurate dense correspondences between 3D point clouds. The proposed pipeline is an extension and a generalization of the functional maps framework. However, instead of using the Laplace-Beltrami eigenfunctions as done in virtually all previous works in this domain, we demonstrate that learning the basis from data can both improve robustness and lead to better accuracy in challenging settings. We interpret the basis as a learned embedding into a higher dimensional space. Following the functional map paradigm the optimal transformation in this embedding space must be linear and we propose a separate architecture aimed at estimating the transformation by learning optimal descriptor functions. This leads to the first end-to-end trainable functional map-based correspondence approach in which both the basis and the descriptors are learned from data. Interestingly, we also observe that learning a \emph{canonical} embedding leads to worse results, suggesting that leaving an extra linear degree of freedom to the embedding network gives it more robustness, thereby also shedding light onto the success of previous methods. Finally, we demonstrate that our approach achieves state-of-the-art results in challenging non-rigid 3D point cloud correspondence applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源