论文标题
欧几里得artin-尖组是酰基杂质的双曲线
Euclidean Artin-Tits groups are acylindrically hyperbolic
论文作者
论文摘要
在本文中,我们在标题中显示了该陈述。对于任何有限类型的Garside组,Wiest和作者关联了一个称为\ emph {额外长度图}的双曲线图,他们用它来表明球形类型的Artin-tits的中心商是酰基indrymybolic。通常,欧几里得artin-tits组不是\ emph {先验} garside组,但麦卡蒙德(McCammond)和苏尔韦(Sulway)表明,它嵌入了\ emph {infinite-type} garside组中,他们称之为\ emph {crencyAllographic garside group}。我们将\ emph {双曲线}的附加长度图与该晶体学GARSIDE组相关联,并展示了欧几里得Artin-tits的元素,该元素在此双曲线图上以loxododromomoto的作用和WPD。
In this paper we show the statement in the title. To any Garside group of finite type, Wiest and the author associated a hyperbolic graph called the \emph{additional length graph} and they used it to show that central quotients of Artin-Tits groups of spherical type are acylindrically hyperbolic. In general, a euclidean Artin-Tits group is not \emph{a priori} a Garside group but McCammond and Sulway have shown that it embeds into an \emph{infinite-type} Garside group which they call a \emph{crystallographic Garside group}. We associate a \emph{hyperbolic} additional length graph to this crystallographic Garside group and we exhibit elements of the euclidean Artin-Tits group which act loxodromically and WPD on this hyperbolic graph.