论文标题

预授权类别和派生的等价

Preresolving categories and derived equivalences

论文作者

Henrard, Ruben, van Roosmalen, Adam-Christiaan

论文摘要

众所周知,ABELIAN子类别的分类子类别$ \ MATHCAL {a} $ $ \ MATHCAL {E} $诱导了几个派生的等价:三角形等价$ \ Mathbf {d}一般而言,此外,此外,还限制了一个三角等价$ \ mathbf {d}^{\ mathsf {b}}}}}(\ Mathcal {a})\ to \ to \ to \ sathbf {d}^{d}^{ $ \ operatorName {res.dim} _ {\ Mathcal {a}}(e)(e)<\ infty $ in \ Mathcal {e} $中的任何对象$ e \。如果类别$ \ MATHCAL {E} $是统一的,即$ \ operatorname {res.dim} _ {\ Mathcal {a}}}(\ Mathcal {e})<\ infty $ \ Mathbf {D}(\ Mathcal {E})$。 在本文中,我们表明上述所有语句都适用于(单面)精确类别的preesolodologal子类别。通过传递到单方面的语言,可以删除以下假设:$ \ Mathcal {a} \ subseteq \ Mathcal {e} $完全从经典环境完全封闭,从而产生更轻松的标准和更多示例。为了说明这一点,我们考虑ISBELL类别$ \ MATHCAL {i} $,并证明$ \ Mathcal {i} \ subseteq \ Mathsf {absf {absf {ab} $是预先验证的,但是$ \ Mathcal {i} $无法将其视为延伸封闭的子类别的扩展子类别。 我们还考虑了凯勒给出的标准,以产生完全确切的子类别的派生等效性。我们表明,该标准通过考虑相对弱的基于所述子类别的弱势完成,适合于定期子类别的框架。

It is well known that a resolving subcategory $\mathcal{A}$ of an abelian subcategory $\mathcal{E}$ induces several derived equivalences: a triangle equivalence $\mathbf{D}^-(\mathcal{A})\to \mathbf{D}^-(\mathcal{E})$ exists in general and furthermore restricts to a triangle equivalence $\mathbf{D}^{\mathsf{b}}(\mathcal{A})\to \mathbf{D}^{\mathsf{b}}(\mathcal{E})$ if $\operatorname{res.dim}_{\mathcal{A}}(E)<\infty$ for any object $E\in \mathcal{E}$. If the category $\mathcal{E}$ is uniformly bounded, i.e. $\operatorname{res.dim}_{\mathcal{A}}(\mathcal{E})<\infty$, one obtains a triangle equivalence $\mathbf{D}(\mathcal{A})\to \mathbf{D}(\mathcal{E})$. In this paper, we show that all of the above statements hold for preresolving subcategories of (one-sided) exact categories. By passing to a one-sided language, one can remove the assumption that $\mathcal{A}\subseteq \mathcal{E}$ is extension-closed completely from the classical setting, yielding easier criteria and more examples. To illustrate this point, we consider the Isbell category $\mathcal{I}$ and show that $\mathcal{I}\subseteq \mathsf{Ab}$ is preresolving but $\mathcal{I}$ cannot be realized as an extension-closed subcategory of an exact category. We also consider a criterion given by Keller to produce derived equivalences of fully exact subcategories. We show that this criterion fits into the framework of preresolving subcategories by considering the relative weak idempotent completion of said subcategory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源