论文标题

Distrivacy:隐私感知物联网监视系统中的深层神经网络

DistPrivacy: Privacy-Aware Distributed Deep Neural Networks in IoT surveillance systems

论文作者

Baccour, Emna, Erbad, Aiman, Mohamed, Amr, Hamdi, Mounir, Guizani, Mohsen

论文摘要

随着智能城市的出现,物联网(IoT)设备以及深度学习技术的采用量增加了。为了在记忆和计算方面支持这种范式的要求,引入了与IoT协同作用的联合和实时深入共同推导框架。但是,深神经网络(DNN)的分布引起了人们对敏感数据的隐私保护的关注。在这种情况下,已经提出了各种威胁,包括黑盒攻击,恶意参与者可以准确地将任意输入输入到他的设备中。在本文中,我们介绍了一种旨在通过重新考虑分配策略来保护敏感数据的方法论,而无需添加任何计算开销。首先,我们研究了使其容易受到隐私威胁的模型结构的特征。我们发现,将模型特征映射分为大量设备的越多,我们就越掩盖原始图像的专有人物。我们制定了这种方法论,即分散性,作为一个优化问题,在该问题中,我们在共同推荐的延迟,数据的隐私级别和物联网参与者的限量资源之间建立了权衡。由于问题的NP硬度,我们引入了一种在线启发式词,该启发式词支持异类的IoT设备以及多个DNN和数据集,使Pervasive System成为隐私感知和低决策范围应用的通用平台。

With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time deep co-inference framework with IoT synergy was introduced. However, the distribution of Deep Neural Networks (DNN) has drawn attention to the privacy protection of sensitive data. In this context, various threats have been presented, including black-box attacks, where a malicious participant can accurately recover an arbitrary input fed into his device. In this paper, we introduce a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead. First, we examine the characteristics of the model structure that make it susceptible to privacy threats. We found that the more we divide the model feature maps into a high number of devices, the better we hide proprieties of the original image. We formulate such a methodology, namely DistPrivacy, as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy level of the data, and the limited-resources of IoT participants. Due to the NP-hardness of the problem, we introduce an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源