论文标题

在新兴经济中对国内生产总值预测的系统比较

A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy

论文作者

da Costa, Kleyton, da Silva, Felipe Leite Coelho, Coelho, Josiane da Silva Cordeiro, Modenesi, André de Melo

论文摘要

国内生产总值(GDP)是一个重要的经济指标,该指标汇总了有用的信息,以帮助经济代理人和决策者进行决策过程。在这种情况下,GDP的预测成为多个领域的强大决策优化工具。为了朝这个方向做出贡献,我们研究了适用于巴西国内生产总值的经典时间序列模型,州空间模型和神经网络模型的效率。所使用的模型是:季节性自回归的集成运动平均线(Sarima)和Holt-winters方法,它们是经典的时间序列模型;动态线性模型,一个状态空间模型;以及神经网络自动摄影和多层感知器,人工神经网络模型。基于模型比较的统计指标,多层感知器在分析期间提出了最佳的样本内和外样品预测性能,也显着纳入了生长速率结构。

Gross domestic product (GDP) is an important economic indicator that aggregates useful information to assist economic agents and policymakers in their decision-making process. In this context, GDP forecasting becomes a powerful decision optimization tool in several areas. In order to contribute in this direction, we investigated the efficiency of classical time series models, the state-space models, and the neural network models, applied to Brazilian gross domestic product. The models used were: a Seasonal Autoregressive Integrated Moving Average (SARIMA) and a Holt-Winters method, which are classical time series models; the dynamic linear model, a state-space model; and neural network autoregression and the multilayer perceptron, artificial neural network models. Based on statistical metrics of model comparison, the multilayer perceptron presented the best in-sample and out-sample forecasting performance for the analyzed period, also incorporating the growth rate structure significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源