论文标题

数据库,功能和机器学习模型,以识别热驱动的金属绝缘体过渡化合物

Database, Features, and Machine Learning Model to Identify Thermally Driven Metal-Insulator Transition Compounds

论文作者

Georgescu, Alexandru B., Ren, Peiwen, Toland, Aubrey R., Zhang, Shengtong, Miller, Kyle D., Apley, Daniel W., Olivetti, Elsa A., Wagner, Nicholas, Rondinelli, James M.

论文摘要

金属 - 绝缘体过渡(MIT)化合物是可能表现出绝缘或金属行为的材料,具体取决于物理条件,并且由于其在新兴的微电子中的潜在应用而具有极大的基本兴趣。但是,缺乏热驱动的MIT材料,这使得从仅具有绝缘或金属挑战性的化合物中描述了这些化合物。在这里,我们报告了一个材料数据库,该数据库包括来自高质量的实验文献,包括与MIT化合物相似的化学成分和具有相似化学成分的金属和绝缘体,这些数据库是通过材料域知识和自然语言处理的组合而建立的。我们使用组合物,结构和能量描述符(包括两个相关的能量尺度,估计的Hubbard相互作用和电荷传递能量)以及结构 - 键压力指标,称为全球稳定指数(GII)。然后,我们执行监督分类,构建三个电子状态分类器:金属与非金属(M),绝缘体与非绝缘体(I)和MIT与非MIT(T)。我们确定了两个重要的描述符,它们在2D特征空间中分离金属,绝缘体和MIT材料:共价半径的平均偏差和MendeLeeV数字的范围。我们进一步详细介绍了其他重要特征(GII和Ewald Energy),并研究它们如何影响二元钒和氧化钛的分类。我们讨论了这些原子特征与稀土镍家族中的物理相互作用的关系。最后,我们实现了分类器的在线版本,通过上传晶体学结构文件来实现快速概率类预测。

Metal-insulator transition (MIT) compounds are materials that may exhibit insulating or metallic behavior, depending on the physical conditions, and are of immense fundamental interest owing to their potential applications in emerging microelectronics. There is a dearth of thermally-driven MIT materials, however, which makes delineating these compounds from those that are exclusively insulating or metallic challenging. Here we report a material database comprising temperature-controlled MITs (and metals and insulators with similar chemical composition and stoichiometries to the MIT compounds) from high quality experimental literature, built through a combination of materials-domain knowledge and natural language processing. We featurize the dataset using compositional, structural, and energetic descriptors, including two MIT relevant energy scales, an estimated Hubbard interaction and the charge transfer energy, as well as the structure-bond-stress metric referred to as the global-instability index (GII). We then perform supervised classification, constructing three electronic-state classifiers: metal vs non-metal (M), insulator vs non-insulator (I), and MIT vs non-MIT (T). We identify two important descriptors that separate metals, insulators, and MIT materials in a 2D feature space: the average deviation of the covalent radius and the range of the Mendeleev number. We further elaborate on other important features (GII and Ewald energy), and examine how they affect classification of binary vanadium and titanium oxides. We discuss the relationship of these atomic features to the physical interactions underlying MITs in the rare-earth nickelate family. Last, we implement an online version of the classifiers, enabling quick probabilistic class predictions by uploading a crystallographic structure file.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源