论文标题

在高维设置中基于模拟的偏置校正的一般方法

A General Approach for Simulation-based Bias Correction in High Dimensional Settings

论文作者

Guerrier, Stéphane, Karemera, Mucyo, Orso, Samuel, Victoria-Feser, Maria-Pia, Zhang, Yuming

论文摘要

统计分析中的一个重要挑战在于由于数据大小和模型复杂性不断增加而控制估计器的偏差。在实施标准估计器时,近似数值方法和数据功能(例如审查和错误分类)通常会导致分析和/或计算挑战。结果,一致的估计器可能很难获得,尤其是在复杂和/或高维设置中。在本文中,我们研究了一个基于一般模拟的估计框架的特性,该框架允许构建偏见校正一致的估计器。我们表明,与替代方法相比,在更一般的条件下,所考虑的方法导致更强的偏置校正性能。除了其偏差校正优势外,该考虑的方法还可以用作一种简单的策略,以在替代方法可能具有挑战性的设置中构造一致的估计器。此外,可以轻松实施所考虑的框架,并且在计算上是有效的。这些理论结果通过对各种常用模型的仿真研究(包括负二项式回归(有没有审查)和逻辑回归(带有和没有错误分类错误)的模拟研究突出显示。补充材料中提供了其他数值插图。

An important challenge in statistical analysis lies in controlling the bias of estimators due to the ever-increasing data size and model complexity. Approximate numerical methods and data features like censoring and misclassification often result in analytical and/or computational challenges when implementing standard estimators. As a consequence, consistent estimators may be difficult to obtain, especially in complex and/or high dimensional settings. In this paper, we study the properties of a general simulation-based estimation framework that allows to construct bias corrected consistent estimators. We show that the considered approach leads, under more general conditions, to stronger bias correction properties compared to alternative methods. Besides its bias correction advantages, the considered method can be used as a simple strategy to construct consistent estimators in settings where alternative methods may be challenging to apply. Moreover, the considered framework can be easily implemented and is computationally efficient. These theoretical results are highlighted with simulation studies of various commonly used models, including the negative binomial regression (with and without censoring) and the logistic regression (with and without misclassification errors). Additional numerical illustrations are provided in the supplementary materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源