论文标题

解决的分子线观测结果揭示了围绕TMC1A的幼盘中的遗传分子层

Resolved molecular line observations reveal an inherited molecular layer in the young disk around TMC1A

论文作者

Harsono, Daniel, van der Wiel, Matthijs, Bjerkeli, Per, Ramsey, Jon, Calcutt, Hannah, Kristensen, Lars, Jørgensen, Jes

论文摘要

控制恒星和行星形成序列的物理过程会影响原星盘的化学组成和进化。为了了解原始星et的化学组成,我们需要从形成磁盘的形成中限制磁盘的组成和结构。我们的目的是确定幼年圆盘周围TMC1A原轴尺度上的分子丰度结构,以了解其化学结构以及对盘形成的任何可能影响。我们提出了co,$ hco^{+} $,hcn,dcn的空间分析大毫米/亚毫米阵列观测值,以及SO线排放以及TMC1A附近的灰尘连续发射。在LTE中分子的光学薄发射以及通过更详细的非LTE辐射转移计算的假设下,分子柱密度均得到估计。在220至260 GHz之间检测到磁盘的分辨尘埃连续发射。还从内部100 AU区域检测到了HCO $^{+} $,HCN的旋转过渡。从派生的$ hco^{+} $丰度中,我们估算了磁盘表面的电离分数,并找到值,这暗示着积聚过程不是由磁旋转不稳定驱动的。在TMC1A磁盘上平均的分子丰度类似于其Protostellar包膜和其他较旧的II类磁盘。同时,我们发现年轻磁盘相对于太阳系对象的分子丰度之间存在差异。磁盘及其周围的包膜之间的丰度比较表明,大部分形成行星的材料进入磁盘不变。 TMC1A,II类磁盘和太阳系对象周围的HCN和$ H_2 o $ h_2 o $分子丰度的差异追踪磁盘和行星形成过程中的化学演化。

Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, $HCO^{+}$, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in LTE as well as through more detailed non-LTE radiative transfer calculations. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO$^{+}$, HCN, and SO are also detected from the inner 100 au region. From the derived $HCO^{+}$ abundance, we estimate the ionization fraction of the disk surface and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk's molecular abundances relative to Solar System objects. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and $H_2 O$ molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源