论文标题

多体量子魔法

Many-body quantum magic

论文作者

Liu, Zi-Wen, Winter, Andreas

论文摘要

魔术(非稳定器)是一种必要但“昂贵”的“燃料”,以驱动通用耐断层的量子计算。为了正确研究和表征计算和物理学中量子“复杂性”的起源,对魔术的量化有严格的了解至关重要。先前对魔术的研究主要集中在小型系统上,并且很大程度上依赖于离散的Wigner形式主义(这仅在奇怪的Prime功率维度上表现得很好)。在这里,我们提出了一项关于真正多体量子状态的魔法的启动研究,这些量子可能会纠缠不清,重点是在定量层面上进行许多量子位的重要情况。我们首先要解决一个多体状态的“神奇”的基本问题,并表明$ n $ qubit状态的最大魔法本质上是$ n $,同时又是一系列“好”魔术措施。然后,我们表明,实际上,几乎所有$ n $ qubit的纯状态都具有近$ n $的魔力。为了寻求可以理解魔术的高度纠缠状态的明确,可扩展的情况,我们将超图状态的魔术与其基础布尔功能的二阶非线性联系起来。接下来,我们继续研究实践和物理环境中的多体魔法。我们首先考虑一个MBQC的变体,其中客户端仅限于Pauli测量,其中魔术是初始“资源”状态的必要特征。我们表明,具有接近$ n $魔法的$ n $ qubit状态,或者实际上几乎所有州都无法在古典计算机上提供非平凡的加速。然后,我们提出了分析“自然”凝结物质感兴趣的物质系统的魔力的示例。我们将布尔函数技术应用于某些代表性2D SPT状态的魔法的明确界限,并评论魔术与物质阶段的量子复杂性之间可能的进一步联系。

Magic (non-stabilizerness) is a necessary but "expensive" kind of "fuel" to drive universal fault-tolerant quantum computation. To properly study and characterize the origin of quantum "complexity" in computation as well as physics, it is crucial to develop a rigorous understanding of the quantification of magic. Previous studies of magic mostly focused on small systems and largely relied on the discrete Wigner formalism (which is only well behaved in odd prime power dimensions). Here we present an initiatory study of the magic of genuinely many-body quantum states that may be strongly entangled, with focus on the important case of many qubits, at a quantitative level. We first address the basic question of how "magical" a many-body state can be, and show that the maximum magic of an $n$-qubit state is essentially $n$, simultaneously for a range of "good" magic measures. We then show that, in fact, almost all $n$-qubit pure states have magic of nearly $n$. In the quest for explicit, scalable cases of highly entangled states whose magic can be understood, we connect the magic of hypergraph states with the second-order nonlinearity of their underlying Boolean functions. Next, we go on and investigate many-body magic in practical and physical contexts. We first consider a variant of MBQC where the client is restricted to Pauli measurements, in which magic is a necessary feature of the initial "resource" state. We show that $n$-qubit states with nearly $n$ magic, or indeed almost all states, cannot supply nontrivial speedups over classical computers. We then present an example of analyzing the magic of "natural" condensed matter systems of physical interest. We apply the Boolean function techniques to derive explicit bounds on the magic of certain representative 2D SPT states, and comment on possible further connections between magic and the quantum complexity of phases of matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源