论文标题
最新AMS-02宇宙射线电子光谱的新解释
Novel interpretation of the latest AMS-02 cosmic-ray electron spectrum
论文作者
论文摘要
有关宇宙射线电子的最新AMS-02数据显示,能量谱的破裂量约为40 GEV,斜率约为0.1。我们使用半分析扩散模型在10 GEV上进行了最新的AMS-02正电子和电子通量数据,其中包括来自Pulsar Wind Nebulae(PWNE)的成对,来自Supernova Remnants(SNR)的电子以及来自Hadronic Cosmic Cosmic Rays in intersstellar Medssterlar interstellar Medsstersterrar interstellar intersterlar intersterlar interssterlar interstellar interstellar interstellar interstellar interstellar interstellar interstellar interstellar interstellar interstellar interstellar medmed spall的源。我们证明,在我们的设置中,AMS-02电子数据中的斜率变化通过SNRS和pwne的通量贡献之间的相互作用很好地解释了。实际上,对这两个人群数据的相对贡献从10到1000 GEV变化约13倍。 PWN贡献的重要性至少为$4σ$,具体取决于用于传播,星际辐射场和能量损失的模型。我们通过数值传输方程来检查了该结果对低能效应的稳定性。以及在SNR的注射范围中增加可能的断裂。当在Klein-Nishina横截面的完全数值处理中正确计算逆康普顿散射时,单独的能量损失的效果无法解释$ e^ - $通量数据中的断裂,如文献中最近提出的那样。
The latest AMS-02 data on cosmic ray electrons show a break in the energy spectrum around 40 GeV, with a change in the slope of about 0.1. We perform a combined fit to the newest AMS-02 positron and electron flux data above 10 GeV using a semi-analytical diffusion model where sources includes production of pairs from pulsar wind nebulae (PWNe), electrons from supernova remnants (SNRs) and both species from spallation of hadronic cosmic rays with interstellar medium atoms. We demonstrate that within our setup the change of slope in the AMS-02 electron data is well explained by the interplay between the flux contributions from SNRs and from PWNe. In fact, the relative contribution to the data of these two populations changes by a factor of about 13 from 10 to 1000 GeV. The PWN contribution has a significance of at least $4σ$, depending on the model used for the propagation, interstellar radiation field and energy losses. We checked the stability of this result against low-energy effects by solving numerically the transport equation. as well as adding possible breaks in the injection spectrum of SNRs. The effect of the energy losses alone, when the inverse Compton scattering is properly computed within a fully numerical treatment of the Klein-Nishina cross section, cannot explain the break in the $e^-$ flux data, as recently proposed in the literature.