论文标题

学位2线性代数群的共同出现

Degree 2 cohomological invariants of linear algebraic groups

论文作者

Lourdeaux, Alexandre

论文摘要

该论文介绍了在任意领域的平稳和连接线性代数组的共同出现的。更确切地说,我们研究学位$ 2 $不变的具有系数$ \ MATHBB {q}/\ MATHBB {Z}(1)$,这是在Brauer组中占值的不变性。我们的主要工具是简单方案上的带轮的典型同步。我们会对\ emph {every}平滑且连接的线性组的这些不变性进行描述,尤其是在不完美的字段上的非还原组。

The paper deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree $2$ invariants with coefficients $\mathbb{Q}/\mathbb{Z}(1)$, that is invariants taking values in the Brauer group. Our main tool is the étale cohomology of sheaves on simplicial schemes. We get a description of these invariants for \emph{every} smooth and connected linear groups, in particular for non reductive groups over an imperfect field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源