论文标题

在广义的杰伊斯 - 卡明模型中的基础Susy

Underlying SUSY in a generalized Jaynes-Cummings model

论文作者

Maldonado-Villamizar, F. H., González-Gutiérrez, C. A., Villanueva-Vergara, L., Rodríguez-Lara, B. M.

论文摘要

我们提出了一个广义的Jaynes-Cummings模型,其中包括但不限于文献中广泛的实验和理论建议。它涵盖了非线性玻色子项,非线性色散和多玻色子交换相互作用。我们的模型具有基本的谎言分级代数对称性,让人联想到超对称量子力学。这使我们能够提出对角度化方案并计算其分析时间的演变。因此,我们能够为相关的可观察物构建封闭的形式,并探索模型的特定实现的动态,而不是其复杂性。作为一个实际的例子,我们显示了人口倒置的演变和玻色子四倍的初始状态,该初始状态由基态的量子组成,与相干领域相互作用,以选择案例,包括具有鲜明的JC模型,具有鲜明的JC模型,具有kerr样的术语,类似于Kerr的术语,强度依赖性耦合,多骨头交换和Algebraic deformations。

We propose a generalized Jaynes-Cummings model that includes but is not limited to an extensive collection of experimental and theoretical proposals from the literature. It covers nonlinear boson terms, nonlinear dispersive and multi-boson exchange interaction. Our model features an underlying Lie graded algebra symmetry reminiscent to supersymmetric quantum mechanics. This allows us to propose a diagonalization scheme and calculate its analytic time evolution. In consequence, we are able to construct closed forms for relevant observables and explore the dynamics of particular realizations of our model independent of their complexity. As an practical example, we show the evolution of the population inversion and the boson quadratures for an initial state consisting of the qubit in the ground state interacting with a coherent field for a selection of cases including the standard JC model with Stark shift, Kerr-like terms, intensity dependent coupling, multi-boson exchange and algebraic deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源