论文标题

t $^2 $ -NET:半监督的湍流预测模型

T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting

论文作者

Zhang, Denghui, Liu, Yanchi, Cheng, Wei, Zong, Bo, Ni, Jingchao, Chen, Zhengzhang, Chen, Haifeng, Xiong, Hui

论文摘要

准确的空气湍流预测可以帮助航空公司避免危险湍流,指导确保乘客安全,最大化效率并降低成本的路线。传统的湍流预测方法在很大程度上依赖于艰苦的定制湍流指数,这些指数在动态和复杂的天气条件下效果不佳。高分辨率天气数据和湍流记录的最新可用性可以以数据驱动的方式对湍流进行更准确的预测。但是,由于两个挑战,它是开发基于机器学习的湍流预测系统的一项非平凡任务:(1)复杂的时空相关性,湍流是由带有复杂时空模式的空气运动引起的,(2)标签稀缺,可以获得非常有限的湍流标签。为此,在本文中,我们开发了一个统一的半监督框架T $^2 $ -NET,以应对上述挑战。具体而言,我们首先基于卷积LSTM构建一个编码器范式,以建模时空相关性。然后,为了解决标签稀缺问题,我们提出了一种新颖的双标签猜测方法来利用大量未标记的湍流数据。它集成了主要湍流预测任务中的互补信号和辅助湍流检测任务,以生成伪标记,这些伪标记被动态用作其他训练数据。最后,对现实世界湍流数据集的广泛实验结果验证了我们方法对湍流预测的优越性。

Accurate air turbulence forecasting can help airlines avoid hazardous turbulence, guide the routes that keep passengers safe, maximize efficiency, and reduce costs. Traditional turbulence forecasting approaches heavily rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions. The recent availability of high-resolution weather data and turbulence records allows more accurate forecasting of the turbulence in a data-driven way. However, it is a non-trivial task for developing a machine learning based turbulence forecasting system due to two challenges: (1) Complex spatio-temporal correlations, turbulence is caused by air movement with complex spatio-temporal patterns, (2) Label scarcity, very limited turbulence labels can be obtained. To this end, in this paper, we develop a unified semi-supervised framework, T$^2$-Net, to address the above challenges. Specifically, we first build an encoder-decoder paradigm based on the convolutional LSTM to model the spatio-temporal correlations. Then, to tackle the label scarcity problem, we propose a novel Dual Label Guessing method to take advantage of massive unlabeled turbulence data. It integrates complementary signals from the main Turbulence Forecasting task and the auxiliary Turbulence Detection task to generate pseudo-labels, which are dynamically utilized as additional training data. Finally, extensive experimental results on a real-world turbulence dataset validate the superiority of our method on turbulence forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源