论文标题
强大的低数据解决方案:半导体纳米棒的维度预测
A robust low data solution: dimension prediction of semiconductor nanorods
论文作者
论文摘要
对纳米晶体维度的精确控制对于调整各种应用的性质至关重要。但是,通过实验优化的传统控制速度缓慢,乏味且耗时。本文已经开发了一种强大的基于神经网络的回归算法,以精确预测半导体纳米棒(NRS)的长度,宽度和纵横比。鉴于可用的实验数据有限(28个样本),因此首次使用了一种合成的回归(SMOTE-REG)过采样技术(SMOTE-REG)进行数据生成。深度神经网络进一步应用于开发回归模型,该模型证明了对具有相似分布的原始数据和生成的数据进行了很好的预测。通过其他实验数据进一步验证了预测模型,显示了准确的预测结果。此外,使用局部可解释的模型解释(LIME)来解释每个变量的重量,这与其对目标维度的重要性相对应,该变量的重要性与实验观测非常相关。
Precise control over dimension of nanocrystals is critical to tune the properties for various applications. However, the traditional control through experimental optimization is slow, tedious and time consuming. Herein a robust deep neural network-based regression algorithm has been developed for precise prediction of length, width, and aspect ratios of semiconductor nanorods (NRs). Given there is limited experimental data available (28 samples), a Synthetic Minority Oversampling Technique for regression (SMOTE-REG) has been employed for the first time for data generation. Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution. The prediction model is further validated with additional experimental data, showing accurate prediction results. Additionally, Local Interpretable Model-Agnostic Explanations (LIME) is used to interpret the weight for each variable, which corresponds to its importance towards the target dimension, which is approved to be well correlated well with experimental observations.