论文标题
用数值套件金牛座I.粒子指影后变异的对称性变异计算
Symmetry-projected variational calculations with the numerical suite TAURUS I. Variation after particle-number projection
论文作者
论文摘要
我们提出了数值代码Taurus_vap,该数值求解了粒子数投影方程后的变化,用于以球形谐波振荡器为基础表示的对称性无限的实际bogoliubov quasiparticle态。在空间和同道旋转下,所考虑的模型空间是不变的,但是没有假定一组特定的轨道,因此代码可以同时执行价空间和无核计算。此外,对于Bogoliubov Quasiparticle状态,没有假设数字均等,因此该代码可用于描述均匀,奇数和奇数核。可以在几个同时约束下对各种运算符的期望值(例如多极变形,配对场或角动量的组件)执行变异过程。为了证明代码的潜在和多功能性,我们使用经验壳模型相互作用以及手性相互作用执行了几个示例计算。我们希望,执行该代码提供的先进变异Bogoliubov计算能力将对Shell模型和始终社区有益。
We present the numerical code TAURUS_vap that solves the variation after particle-number projection equations for symmetry-unrestricted real Bogoliubov quasiparticle states represented in a spherical harmonic oscillator basis. The model space considered is invariant under spatial and isospin rotations but no specific set of orbits is assumed such that the code can carry out both valence-space and no-core calculations. In addition, no number parity is assumed for the Bogoliubov quasiparticle states such that the code can be used to describe even-even, odd-even and odd-odd nuclei. The variational procedure can be performed under several simultaneous constraints on the expectation values of a variety of operators such as the multipole deformations, the pairing field or the components of the angular momentum. To demonstrate the potential and versatility of the code, we perform several example calculations using an empirical shell-model interaction as well as a chiral interaction. The ability to perform advanced variational Bogoliubov calculations offered by this code will, we hope, be beneficial to the shell model and ab initio communities.