论文标题

QuinticSchrödinger方程弱的湍流状态的奇异性

Singularities in the weak turbulence regime for the quintic Schrödinger equation

论文作者

de Suzzoni, Anne-Sophie

论文摘要

在本文中,我们讨论了QuinticSchrödinger方程的弱湍流理论引发动力学方程的问题。我们在$ l \ mathbb t $上研究QuinticSchrödinger方程,其中$ l \ gg 1 $,并具有尺寸$ \ varepsilon \ ll 1 $的非线性。我们考虑解决方案的傅立叶系数的相关性$ f(t)$时,$ t = t = t \ varepsilon^{ - 2} $当$ \ varepsilon \ rightarrow 0 $和$ l \ rightarrow \ rightarrow \ infty $。我们的结果可以通过以下方式概括:存在$ \ varepsilon $和$ l $的政权,因此对于$ t $ dyadic,$ f(t)$具有物理文献的预期表格,但$ f $的不一致不连续点。

In this paper, we discuss the problem of derivation of kinetic equations from the theory of weak turbulence for the quintic Schrödinger equation. We study the quintic Schrödinger equation on $L\mathbb T$, with $L\gg 1$ and with a non-linearity of size $\varepsilon\ll 1$. We consider the correlations $f(T)$ of the Fourier coefficients of the solution at times $t = T\varepsilon^{-2}$ when $\varepsilon\rightarrow 0$ and $L\rightarrow \infty$. Our results can be summed up in the following way : there exists a regime for $\varepsilon$ and $L$ such that for $T$ dyadic, $f(T)$ has the form expected from the physics literature, but such that $f$ has an infinite number of discontinuity points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源