论文标题

来自状态密度的微型隧穿速率Instanton理论

Microcanonical Tunneling Rates from Density-of-States Instanton Theory

论文作者

Fang, Wei, Winter, Pierre, Richardson, Jeremy O.

论文摘要

半经典激体理论是一种量子过渡状态理论的一种形式,可以应用于计算复杂分子系统的热反应速率,包括量子隧穿效应。已经进行了许多尝试来扩展理论以治疗微型频率的理论。但是,由于状态的明确总和,先前的配方在大型系统上是计算上不可行的,要么涉及额外的近似值,从而使其可靠性降低。我们提出了一种称为密度的固定理论的坚固且实用的微型典型公式,它避免了完全超过状态的总和。与激体顿固有的半经典近似值一致,我们将固定相近似与反向拉普拉斯变换相一致,以获得状态的密度。可以仅使用一小部分intanton计算的数据后处理来评估这一点,从而使我们的方法在计算上保持有效。我们表明,新的配方预测的结果与原子 - diatom反应的量子散射理论非常吻合,并与Criegee中间体中光激发的单分子氢转移的实验相吻合。当从玻尔兹曼的平均值上评估热速率比我们的新微型典型形式主义评估时,它可以克服常规激体理论的一些问题。特别是,它可以预测交叉温度下的平滑过渡,并能够描述带有反应性复合物(例如CH3OH + OH)的双分子反应。

Semiclassical instanton theory is a form of quantum transition-state theory which can be applied to computing thermal reaction rates for complex molecular systems including quantum tunneling effects. There have been a number of attempts to extend the theory to treat microcanonical rates. However, the previous formulations are either computationally unfeasible for large systems due to an explicit sum over states or they involve extra approximations which make them less reliable. We propose a robust and practical microcanonical formulation called density-of-states instanton theory, which avoids the sum over states altogether. In line with the semiclassical approximations inherent to the instanton approach, we employ the stationary-phase approximation to the inverse Laplace transform to obtain the densities of states. This can be evaluated using only post-processing of the data available from a small set of instanton calculations, such that our approach remains computationally efficient. We show that the new formulation predicts results that agree well with quantum scattering theory for an atom-diatom reaction and with experiments for a photoexcited unimolecular hydrogen transfer in a Criegee intermediate. When the thermal rate is evaluated from a Boltzmann average over our new microcanonical formalism, it can overcome some problems of conventional instanton theory. In particular, it predicts a smooth transition at the crossover temperature and is able to describe bimolecular reactions with pre-reactive complexes such as CH3OH + OH.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源