论文标题
在有限维c* - 代数上,状态参数估计理论的差异几何方面
Differential geometric aspects of parametric estimation theory for states on finite-dimensional C*-algebras
论文作者
论文摘要
提出了有限维$ c^{\ star} $ - 代数的估计理论的几何表述。该公式允许在一个统一的数学框架中处理经典和量子案例。提出了具有离散和有限结果空间的参数统计模型的Cramer-Rao和Helstrom边界的推导。
A geometrical formulation of estimation theory for finite-dimensional $C^{\star}$-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.