论文标题

通量晶体,主要金属和扁平带中的可溶解旋转轨道液体

Flux crystals, Majorana metals, and flat bands in exactly solvable spin-orbital liquids

论文作者

Chulliparambil, Sreejith, Janssen, Lukas, Vojta, Matthias, Tu, Hong-Hao, Seifert, Urban F. P.

论文摘要

旋转轨道液体是具有纠缠旋转和轨道自由度的系统中的量子无序状态。我们在二维中精确地研究了可溶解的自旋轨道模型,其中选择了Heisenberg-,Kitaev-和$γ$ -Type的相互作用以及外部磁场。这些模型实现了各种旋转式液体阶段,这些阶段具有分散的Majorana fermions,其中包括费米表面,节点狄拉克或二次带触摸点或完整的差距。特别是,我们表明采符磁场可以稳定非平凡通量模式,并在具有不同拓扑特征的状态之间诱导元磁过渡。可以调节可溶解最近的邻居生物偏度旋转轨道扰动以稳定零能量的平坦带。我们详细讨论了$ \ mathrm {so}(2)$ - 和$ \ mathrm {so}(3)$ - 在广场上和蜂窝晶格上的对称的自旋 - 轨道模型,并使用群体理论论证来推广到$ \ mthrm {so}(so}(so})$ - symmetric models $ - symmetric interric intecer $ usitary inteeger $ nb这些结果扩展了具有旋转轨道基态的确切可解决模型的列表,并突出了此类外来相的有趣的一般特征。因此,我们的模型是更现实的候选材料模型的绝佳起点。

Spin-orbital liquids are quantum disordered states in systems with entangled spin and orbital degrees of freedom. We study exactly solvable spin-orbital models in two dimensions with selected Heisenberg-, Kitaev-, and $Γ$-type interactions, as well as external magnetic fields. These models realize a variety of spin-orbital-liquid phases featuring dispersing Majorana fermions with Fermi surfaces, nodal Dirac or quadratic band touching points, or full gaps. In particular, we show that Zeeman magnetic fields can stabilize nontrivial flux patterns and induce metamagnetic transitions between states with different topological character. Solvable nearest-neighbor biquadratic spin-orbital perturbations can be tuned to stabilize zero-energy flat bands. We discuss in detail the examples of $\mathrm{SO}(2)$- and $\mathrm{SO}(3)$-symmetric spin-orbital models on the square and honeycomb lattices, and use group-theoretical arguments to generalize to $\mathrm{SO}(ν)$-symmetric models with arbitrary integer $ν> 1$. These results extend the list of exactly solvable models with spin-orbital-liquid ground states and highlight the intriguing general features of such exotic phases. Our models are thus excellent starting points for more realistic modellings of candidate materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源