论文标题
协变量调整的Fisher随机测试平均治疗效果
Covariate-adjusted Fisher randomization tests for the average treatment effect
论文作者
论文摘要
Fisher的随机测试(FRT)在没有治疗效果的任何单位的强烈零假设下提供了确切的$ P $值,并允许灵活的协变量调整以提高功率。有趣的是,该程序是否也可以有效测试零平均治疗效果的弱零假设。为此,我们通过协变量调整的测试统计数据评估了FRT的两种一般策略:基于仅具有协变量的结果模型的残差,并且基于与治疗和协变量的结果模型的输出。基于理论和模拟,我们建议使用观察到的结果在处理中的普通最小二乘(OLS)拟合,居中的协变量及其相互作用进行协变量调整,并用该处理统计量的鲁棒$ t $ value进行FRT。所得的FRT对于强零假设的有限样本是有限样本,对弱的空假设有效,并且比替代方面的未经调整的类似物更强大,无论是否正确指定了线性模型,所有这些都是有效的。我们分别开发了完整随机化,群集随机化,分层随机化和重新授权的理论,并为每个设计下的测试程序和测试统计量提供了建议。我们首先关注有限的人口视角,然后将结果扩展到超级人群的角度,突出了标准误差的差异。在程序的相似性的推动下,我们还评估了最初针对线性模型的五个现有置换测试的基于设计的属性,并显示了拟议的FRT在测试治疗效果方面的优越性。
Fisher's randomization test (FRT) delivers exact $p$-values under the strong null hypothesis of no treatment effect on any units whatsoever and allows for flexible covariate adjustment to improve the power. Of interest is whether the procedure could also be valid for testing the weak null hypothesis of zero average treatment effect. Towards this end, we evaluate two general strategies for FRT with covariate-adjusted test statistics: that based on the residuals from an outcome model with only the covariates, and that based on the output from an outcome model with both the treatment and the covariates. Based on theory and simulation, we recommend using the ordinary least squares (OLS) fit of the observed outcome on the treatment, centered covariates, and their interactions for covariate adjustment, and conducting FRT with the robust $t$-value of the treatment as the test statistic. The resulting FRT is finite-sample exact for the strong null hypothesis, asymptotically valid for the weak null hypothesis, and more powerful than the unadjusted analog under alternatives, all irrespective of whether the linear model is correctly specified or not. We develop the theory for complete randomization, cluster randomization, stratified randomization, and rerandomization, respectively, and give a recommendation for the test procedure and test statistic under each design. We first focus on the finite-population perspective and then extend the result to the super-population perspective, highlighting the difference in standard errors. Motivated by the similarity in procedure, we also evaluate the design-based properties of five existing permutation tests originally for linear models and show the superiority of the proposed FRT for testing the treatment effects.