论文标题

混合反向传播平行储层网络

Hybrid Backpropagation Parallel Reservoir Networks

论文作者

Evanusa, Matthew, Shrestha, Snehesh, Girvan, Michelle, Fermüller, Cornelia, Aloimonos, Yiannis

论文摘要

在许多现实世界中,LSTM和GRU等完全不同的RNN已被广泛部署以求解时间序列学习任务。这些网络通过返回流动进行训练,这在实践中可以很好地运行,但涉及对网络的生物学不现实的展开,以逐步进行梯度更新,这在计算上是昂贵的,并且很难调整。第二个范式(储层计算)将重复的重量矩阵保持固定和随机。在这里,我们提出了一个新型的混合网络,我们称之为混合反向传播并行回声状态网络(HBP-ESN),它结合了学习储层的随机时间特征的有效性与深神经网络的读出能力与批处理归一化。我们证明,在两个复杂的现实世界中多维的时间序列数据集上,我们的新网络的表现优于LSTM和GRU,包括这些网络的多层“深”版本:使用Chalearn的骨架KeyPoints的手势识别,以及来自Chalearn的Skeleton Keypoints和Deap DataSet的deap DataSet,以识别EEG测量的情感识别。我们还表明,我们称之为HBP-ESN M形环的新型元环结构的包含与一个大型储层的性能相似,同时减少了数量级所需的记忆。因此,我们提供了这种新的混合储层深度学习范式,作为时间或顺序数据的RNN学习的新替代方向。

In many real-world applications, fully-differentiable RNNs such as LSTMs and GRUs have been widely deployed to solve time series learning tasks. These networks train via Backpropagation Through Time, which can work well in practice but involves a biologically unrealistic unrolling of the network in time for gradient updates, are computationally expensive, and can be hard to tune. A second paradigm, Reservoir Computing, keeps the recurrent weight matrix fixed and random. Here, we propose a novel hybrid network, which we call Hybrid Backpropagation Parallel Echo State Network (HBP-ESN) which combines the effectiveness of learning random temporal features of reservoirs with the readout power of a deep neural network with batch normalization. We demonstrate that our new network outperforms LSTMs and GRUs, including multi-layer "deep" versions of these networks, on two complex real-world multi-dimensional time series datasets: gesture recognition using skeleton keypoints from ChaLearn, and the DEAP dataset for emotion recognition from EEG measurements. We show also that the inclusion of a novel meta-ring structure, which we call HBP-ESN M-Ring, achieves similar performance to one large reservoir while decreasing the memory required by an order of magnitude. We thus offer this new hybrid reservoir deep learning paradigm as a new alternative direction for RNN learning of temporal or sequential data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源