论文标题
西班牙和印度的Covid-19:通过分析流行病学和社交媒体数据来比较政策的影响
COVID-19 in Spain and India: Comparing Policy Implications by Analyzing Epidemiological and Social Media Data
论文作者
论文摘要
COVID-19的大流行迫使公共卫生专家制定了应有的政策,以阻止感染的传播,包括诸如部分/完全锁定的措施。这些政策的有效性随地理,人口分布和实施中有效性而有所不同。因此,一些国家(例如,海地,海地)比其他国家(例如美国)更成功。对一个国家有效的公共卫生政策进行数据驱动的调查将使其他国家的公共卫生专家决定未来的行动方案,以控制疾病和流行病的暴发。我们选择西班牙和印度对某些因素相似的地区进行分析:(1)人口密度,(2)失业率,(3)旅游业和(4)生活质量。我们认为,可以从Twitter对话中获得的公民意识形态可以提供有关政策符合性的见解,并适当地反思未来的案例预测。当曲线显示彼此不同的新案例的数量时,一个里程碑用于定义一个时间段来提取与策略相关的推文,而来自策略依赖性子事件的因果关系网络则用于生成概念云。使用回归模型中的情感分数预测新案例的数量。我们看到,新的案例预测反映了Twitter的情绪,与触发子事件有意义地息息相关,该事件使西班牙和印度与政策相关的发现得到有效比较。
The COVID-19 pandemic has forced public health experts to develop contingent policies to stem the spread of infection, including measures such as partial/complete lockdowns. The effectiveness of these policies has varied with geography, population distribution, and effectiveness in implementation. Consequently, some nations (e.g., Taiwan, Haiti) have been more successful than others (e.g., United States) in curbing the outbreak. A data-driven investigation into effective public health policies of a country would allow public health experts in other nations to decide future courses of action to control the outbreaks of disease and epidemics. We chose Spain and India to present our analysis on regions that were similar in terms of certain factors: (1) population density, (2) unemployment rate, (3) tourism, and (4) quality of living. We posit that citizen ideology obtainable from twitter conversations can provide insights into conformity to policy and suitably reflect on future case predictions. A milestone when the curves show the number of new cases diverging from each other is used to define a time period to extract policy-related tweets while the concepts from a causality network of policy-dependent sub-events are used to generate concept clouds. The number of new cases is predicted using sentiment scores in a regression model. We see that the new case predictions reflects twitter sentiment, meaningfully tied to a trigger sub-event that enables policy-related findings for Spain and India to be effectively compared.