论文标题
赞美诗的特性在四色,五色和六色粉状的示例中
Properties of HYMNs in Examples of Four-Color, Five-Color, and Six-Color Adinkras
论文作者
论文摘要
已证明,与离散的三角形网格的离散摩尔斯函数相关的“ Banchoff索引”的数学概念已证明与Adinkras中节点的高度分配相对应。在最近的工作中,已经引入了“ Banchoff矩阵”的概念,导致赞美诗 - 高度产生矩阵编号。赞美诗将Adinkra的形状映射到来自Banchoff矩阵的一组特征值。在一些四色,最小五色和最少的六色粉状的示例中,探索了赞美诗的特性。
The mathematical concept of a "Banchoff index" associated with discrete Morse functions for oriented triangular meshes has been shown to correspond to the height assignments of nodes in adinkras. In recent work there has been introduced the concept of "Banchoff matrices" leading to HYMNs - height yielding matrix numbers. HYMNs map the shape of an adinkra to a set of eigenvalues derived from Banchoff matrices. In the context of some examples of four-color, minimal five-color, and minimal six-color adinkras, properties of the HYMNs are explored.