论文标题
比较高分辨率卫星图像分析的工作流申请设计
Comparing Workflow Application Designs for High Resolution Satellite Image Analysis
论文作者
论文摘要
非常高分辨率的卫星和空中图像用于监测和进行生态系统的大规模调查。卷积神经网络已成功地用于分析此类图像以检测大型动物和显着特征。随着数据集的数量和图像数量的增加,使用高性能计算资源变得必要。在本文中,我们研究了三种与数据驱动的工作流程设计,以支持HPC上具有异质任务的图像分析管道。我们分析了从两个用例中处理数据集的每种设计的功能,总计4,672颗卫星和空中图像,以及8.35 TB的数据。我们在实验中对图像处理管道任务的执行时间进行建模。我们执行实验以表征资源利用率,总计完成时间以及每个设计的间接费用。基于模型,开销和利用分析,我们显示了哪种设计最适合具有相似特征的科学管道。
Very High Resolution satellite and aerial imagery are used to monitor and conduct large scale surveys of ecological systems. Convolutional Neural Networks have successfully been employed to analyze such imagery to detect large animals and salient features. As the datasets increase in volume and number of images, utilizing High Performance Computing resources becomes necessary. In this paper, we investigate three task-parallel, data-driven workflow designs to support imagery analysis pipelines with heterogeneous tasks on HPC. We analyze the capabilities of each design when processing datasets from two use cases for a total of 4,672 satellite and aerial images, and 8.35 TB of data. We experimentally model the execution time of the tasks of the image processing pipelines. We perform experiments to characterize the resource utilization, total time to completion, and overheads of each design. Based on the model, overhead and utilization analysis, we show which design is best suited to scientific pipelines with similar characteristics.