论文标题

概括露丝·艾伦的数字

Generalizing Ruth-Aaron Numbers

论文作者

Jiang, Yanan, Miller, Steven J.

论文摘要

令$ f(n)$为$ n $的素数的总和,以多重性计数;因此,$ f(2020)$ $ = f(2^2 \ cdot 5 \ cdot 101)= 110 $。自1974年著名的1974年棒球比赛以来,露丝 - 雅隆的数字($ f(n)= f(n)= f(n)= f(n)= f(n+1)$ $ n $一直是许多数字理论家的兴趣。 1978年,Erdös和Pomerance首次讨论了许多财产。在本文中,我们将其结果推广到两个方向:通过将主要因素提高到功率,并允许在$ f(n)$和$ f(n+1)$之间差异很小。我们证明,$ f_r(n)= f_r(n+1)$ is $ o \ weft(\ frac {x(x(\ log log \ log x)^3 \ log \ log \ log x}} {(\ log x} {(\ log x){(\ log x)^2} \ right)$ f_r(n $ f_r( $ r- $ th功率。我们还证明,如果$ | f_r(n)-f_r(n+1)| \ leq k(x)$,$ n $的密度保留$ 0 $,其中$ k(x)$是$ x $的函数,增长率相对较低。此外,我们进一步讨论了露丝·艾伦(Ruth-Aaron)数字的无限,并为将来的研究提供了一些可能的方向。

Let $f(n)$ be the sum of the prime divisors of $n$, counted with multiplicity; thus $f(2020)$ $= f(2^2 \cdot 5 \cdot 101) = 110$. Ruth-Aaron numbers, or integers $n$ with $f(n)=f(n+1)$, have been an interest of many number theorists since the famous 1974 baseball game gave them the elegant name after two baseball stars. Many of their properties were first discussed by Erdös and Pomerance in 1978. In this paper, we generalize their results in two directions: by raising prime factors to a power and allowing a small difference between $f(n)$ and $f(n+1)$. We prove that the number of integers up to $x$ with $f_r(n)=f_r(n+1)$ is $O\left(\frac{x(\log\log x)^3\log\log\log x}{(\log x)^2}\right)$, where $f_r(n)$ is the Ruth-Aaron function replacing each prime factor with its $r-$th power. We also prove that the density of $n$ remains $0$ if $|f_r(n)-f_r(n+1)|\leq k(x)$, where $k(x)$ is a function of $x$ with relatively low rate of growth. Moreover, we further the discussion of the infinitude of Ruth-Aaron numbers and provide a few possible directions for future study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源