论文标题

自动选择成人和婴儿视觉分类中的眼动变量

Automatic selection of eye tracking variables in visual categorization in adults and infants

论文作者

Rivera, Samuel, Best, Catherine A., Yim, Hyungwook, Walther, Dirk B., Sloutsky, Vladimir M., Martinez, Aleix M.

论文摘要

视觉分类和视觉类别的学习表现出早期发作,但是早期分类的基本机制尚不清楚。检查这些机制的主要限制因素是婴儿合作的持续时间有限(10-15分钟),这几乎没有用于多次测试试验的空间。凭借其与视觉关注的紧密联系,眼睛跟踪是获取类别学习机制的一种有前途的方法。但是,研究人员应该如何决定要关注的丰富眼神跟踪数据的哪些方面?迄今为止,通常会手工挑选眼动变量,这可能会导致眼睛跟踪数据中的偏见。在这里,我们提出了一种自动化方法,可以根据其实用性的分析来选择眼睛跟踪变量,以区分学习者与视觉类别的非学习者。我们向婴儿和成年人介绍了类别学习任务,并跟踪了他们的眼睛运动。然后,我们提取了一组过度完整的眼睛跟踪变量,其中包含持续时间,概率,潜伏期以及固定顺序和固定眼动。我们比较了三种统计技术,用于识别这一大型集合中的这些变量,这些变量可用于区分非学习者:ANOVA排名,贝叶斯排名和L1正规逻辑回归。我们发现这些方法之间在识别一小部分判别变量时发现了显着的一致性。此外,相同的眼科跟踪变量使我们能够从成年人中的非学习者和6至8个月大的婴儿中对类别学习者进行分类,精度超过71%。

Visual categorization and learning of visual categories exhibit early onset, however the underlying mechanisms of early categorization are not well understood. The main limiting factor for examining these mechanisms is the limited duration of infant cooperation (10-15 minutes), which leaves little room for multiple test trials. With its tight link to visual attention, eye tracking is a promising method for getting access to the mechanisms of category learning. But how should researchers decide which aspects of the rich eye tracking data to focus on? To date, eye tracking variables are generally handpicked, which may lead to biases in the eye tracking data. Here, we propose an automated method for selecting eye tracking variables based on analyses of their usefulness to discriminate learners from non-learners of visual categories. We presented infants and adults with a category learning task and tracked their eye movements. We then extracted an over-complete set of eye tracking variables encompassing durations, probabilities, latencies, and the order of fixations and saccadic eye movements. We compared three statistical techniques for identifying those variables among this large set that are useful for discriminating learners form non-learners: ANOVA ranking, Bayes ranking, and L1 regularized logistic regression. We found remarkable agreement between these methods in identifying a small set of discriminant variables. Moreover, the same eye tracking variables allow us to classify category learners from non-learners among adults and 6- to 8-month-old infants with accuracies above 71%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源