论文标题

最短的闭合曲线检查球体

Shortest closed curve to inspect a sphere

论文作者

Ghomi, Mohammad, Wenk, James

论文摘要

我们表明,在Euclidean 3空间中,任何位于单位球体外部并包含凸面内的球体的闭合曲线至少为4π$。仅当曲线由$ 4 $的长度$π$组成时,平等才能保持平等,该曲线以棒球接缝的形状排列,这是V. A. Zalgaller在1996年的猜想。

We show that in Euclidean 3-space any closed curve which lies outside the unit sphere and contains the sphere within its convex hull has length at least $4π$. Equality holds only when the curve is composed of $4$ semicircles of length $π$, arranged in the shape of a baseball seam, as conjectured by V. A. Zalgaller in 1996.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源