论文标题
使用卷积神经网络抑制接地卷
Ground Roll Suppression using Convolutional Neural Networks
论文作者
论文摘要
地震数据处理在地震探索中起着重要作用,因为它可以调节大部分地震解释性表现。在这种情况下,生成可靠的堆栈后地震数据也取决于处理有效的堆栈前噪声衰减工具。在这里,我们应对地面滚动噪声,这是堆栈地震数据中观察到的最具挑战性和最常见的噪声之一。由于地面滚动的特征是相对低频率和高振幅,因此最常用的抑制方法是基于接地卷特性带的频率振幅过滤器。但是,当信号和噪声共享相同的频率范围时,这些方法通常也会提供信号抑制或残留噪声。在本文中,我们利用了卷积神经网络的高度非线性特征,并建议使用不同的体系结构来检测射击者中的地面滚动,并最终使用条件生成的对抗网络来抑制它们。此外,我们提出的指标以评估地面滚动抑制作用,并与专家过滤相比报告了强大的结果。最后,我们讨论了对类似和不同地质的训练模型的概括,以更好地了解我们在实际应用中提议的可行性。
Seismic data processing plays a major role in seismic exploration as it conditions much of the seismic interpretation performance. In this context, generating reliable post-stack seismic data depends also on disposing of an efficient pre-stack noise attenuation tool. Here we tackle ground roll noise, one of the most challenging and common noises observed in pre-stack seismic data. Since ground roll is characterized by relative low frequencies and high amplitudes, most commonly used approaches for its suppression are based on frequency-amplitude filters for ground roll characteristic bands. However, when signal and noise share the same frequency ranges, these methods usually deliver also signal suppression or residual noise. In this paper we take advantage of the highly non-linear features of convolutional neural networks, and propose to use different architectures to detect ground roll in shot gathers and ultimately to suppress them using conditional generative adversarial networks. Additionally, we propose metrics to evaluate ground roll suppression, and report strong results compared to expert filtering. Finally, we discuss generalization of trained models for similar and different geologies to better understand the feasibility of our proposal in real applications.