论文标题
对宇宙量表的测试重力:约旦 - 大桥理论的案例研究
Testing Gravity on Cosmic Scales: A Case Study of Jordan-Brans-Dicke Theory
论文作者
论文摘要
我们提供了Jordan-Brans-Dicke(JBD)重力的独特修饰引力理论的端到端探索,从对背景扩展和线性扰动的分析和数值描述到使用现有套餐的混合套件捕获的非线性套件,再到现有的cosmological Probess的混合套件。首次在宇宙学分析中同时建模并传播了由于重子,大量中微子和修饰的重力引起的物质功率谱的非线性校正。在对普朗克CMB温度,极化和透镜重建的结合分析中,万神殿超新星距离,Bos距离的boss测量值,Alcock-paczynski效应以及增长率以及关节($ 3 \ times 2 $ pt)的数据集($ 3。从孩子和2 flens中,我们限制了JBD耦合常数,$ω_ {\ rm bd}> 1540 $(95%cl),有效的引力常数,$ g _ {\ rm Matter}/g = 0.997 \ pm0.029 $ Baryonic反馈振幅,$ b <2.8 $(95%Cl),这与标准模型期望一致。我们表明,引力理论的不确定性减轻了孩子$ \ times $ \ times $ 2Dflens和Planck之间的紧张局势,低于$1σ$,以及Planck与Riess等人的直接测量之间的Hubble常数张力。 (2019)降至〜$3σ$;但是,我们发现与$λ$ cdm相对于JBD重力率没有实质性的模型选择偏好。我们进一步表明,由于$ω_ {\ rm bd} $参数化变得更加限制,并且$ g _ {\ rm Matter}/g $抑制CMB潮湿的尾巴,这可能会使小规模物理学的未来地球膨胀。 (简略)
We provide an end-to-end exploration of a distinct modified gravitational theory in Jordan-Brans-Dicke (JBD) gravity, from an analytical and numerical description of the background expansion and linear perturbations, to the nonlinear regime captured with a hybrid suite of $N$-body simulations, to the parameter constraints from existing cosmological probes. The nonlinear corrections to the matter power spectrum due to baryons, massive neutrinos, and modified gravity are simultaneously modeled and propagated in the cosmological analysis for the first time. In the combined analysis of the Planck CMB temperature, polarization, and lensing reconstruction, Pantheon supernova distances, BOSS measurements of BAO distances, the Alcock-Paczynski effect, and the growth rate, along with the joint ($3\times2$pt) dataset of cosmic shear, galaxy-galaxy lensing, and overlapping redshift-space galaxy clustering from KiDS and 2dFLenS, we constrain the JBD coupling constant, $ω_{\rm BD}>1540$ (95% CL), the effective gravitational constant, $G_{\rm matter}/G=0.997\pm0.029$, the sum of neutrino masses, $\sum m_ν<0.12$ eV (95% CL), and the baryonic feedback amplitude, $B<2.8$ (95% CL), all in agreement with the standard model expectation. We show that the uncertainty in the gravitational theory alleviates the tension between KiDS$\times$2dFLenS and Planck to below $1σ$ and the tension in the Hubble constant between Planck and the direct measurement of Riess et al. (2019) down to ~$3σ$; however, we find no substantial model selection preference for JBD gravity relative to $Λ$CDM. We further show that the neutrino mass bound degrades by up to a factor of three as the $ω_{\rm BD}$ parameterization becomes more restrictive and that a positive shift in $G_{\rm matter}/G$ suppresses the CMB damping tail in a way that might complicate future inferences of small-scale physics. (Abridged)