论文标题

初始$ l^2 \ times \ cdots \ times l^2 $多线性操作员的边界

Initial $L^2\times\cdots\times L^2 $ bounds for multilinear operators

论文作者

Grafakos, Loukas, He, Danqing, Honzík, Petr, Park, Bae Jun

论文摘要

$ l^p $有限的卷积运算符理论是基于最初的$ l^2 \ to l^2 $估算的估算值。鉴于在这种情况下,Plancherel的身份不可用,多线性操作员的相应理论缺乏如此简单的初始估计,而到目前为止,尚不清楚自然的初始估计可能是什么。在这项工作中,我们准确地实现了这个目标,即获得初始的$ l^2 \ times \ cdots \ times l^2 \至l^{2/m} $估算$ m $ linear乘数运算符的通用构建块。我们将此结果应用于推导多线性粗糙奇异积分,Hörmander型的乘数以及其衍生物满足定性估计值的乘数的类似边界。

The $L^p$ boundedness theory of convolution operators is \linebreak based on an initial $L^2\to L^2$ estimate derived from the Fourier transform. The corresponding theory of multilinear operators lacks such a simple initial estimate in view of the unavailability of Plancherel's identity in this setting, and up to now it has not been clear what a natural initial estimate might be. In this work we achieve exactly this goal, i.e., obtain an initial $L^2\times\cdots\times L^2\to L^{2/m}$ estimate for general building blocks of $m$-linear multiplier operators. We apply this result to deduce analogous bounds for multilinear rough singular integrals, multipliers of Hörmander type, and multipliers whose derivatives satisfy qualitative estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源