论文标题

深度级别差异的正交关系 - Coxeter类型的lusztig方案

Orthogonality relations for deep level Deligne--Lusztig schemes of Coxeter type

论文作者

Dudas, Olivier, Ivanov, Alexander B.

论文摘要

在本文中,我们证明了由Coxeter类型的深层deligne-lusztig方案引起的表示形式的一些正交关系。这概括了Lusztig(2004)和Chan和第二作者(2019)的先前结果。潜在的应用包括研究由Lusztig(1976)的精神的深层de依 - 卢斯蒂格方案及其几何形状引起的一项单位表示。

In this paper we prove some orthogonality relations for representations arising from deep level Deligne--Lusztig schemes of Coxeter type. This generalizes previous results of Lusztig (2004), and of Chan and the second author (2019). Potential applications include the study of unipotent representations arising from such deep level Deligne--Lusztig schemes, as well as their geometry, in the spirit of the work of Lusztig (1976).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源