论文标题

使用基于新的多标签深神经网络的新方案来鉴定拉曼光谱的复杂混合物

Identification of complex mixtures for Raman spectroscopy using a novel scheme based on a new multi-label deep neural network

论文作者

Pan, Liangrui, Pipitsunthonsan, Pronthep, Daengngam, Chalongrat, Chongcheawchamnan, Mitchai

论文摘要

由于荧光和添加剂白噪声以及复杂的光谱指纹引起的嘈杂环境,在拉曼光谱应用中,复杂混合物材料的鉴定仍然是一个主要的挑战。在本文中,我们提出了一种基于恒定小波变换(CWT)和一个深层网络的新方案,用于对复杂混合物进行分类。该方案首先使用CWT将嘈杂的拉曼光谱转换为二维刻度图。然后,将多标签深神经网络模型(MDNN)应用于分类材料。提出的模型可以加速特征提取,并使用全局平均池化层扩展特征图。 Sigmoid函数在模型的最后一层中实现。 MDNN模型接受了从棕榈油中的物质制备的样品中收集的数据训练,验证和测试。在培训和验证过程中,应用数据增强以克服数据的不平衡并丰富了拉曼光谱的多样性。从测试结果中可以发现,MDNN模型在锤击损失,一个错误,覆盖范围,排名损失,平均精度,F1宏平均和F1微平均值方面优于先前提出的深神网络模型。从我们的模型获得的平均检测时间为5.31 s,比以前提出的模型的检测时间快得多。

With noisy environment caused by fluoresence and additive white noise as well as complicated spectrum fingerprints, the identification of complex mixture materials remains a major challenge in Raman spectroscopy application. In this paper, we propose a new scheme based on a constant wavelet transform (CWT) and a deep network for classifying complex mixture. The scheme first transforms the noisy Raman spectrum to a two-dimensional scale map using CWT. A multi-label deep neural network model (MDNN) is then applied for classifying material. The proposed model accelerates the feature extraction and expands the feature graph using the global averaging pooling layer. The Sigmoid function is implemented in the last layer of the model. The MDNN model was trained, validated and tested with data collected from the samples prepared from substances in palm oil. During training and validating process, data augmentation is applied to overcome the imbalance of data and enrich the diversity of Raman spectra. From the test results, it is found that the MDNN model outperforms previously proposed deep neural network models in terms of Hamming loss, one error, coverage, ranking loss, average precision, F1 macro averaging and F1 micro averaging, respectively. The average detection time obtained from our model is 5.31 s, which is much faster than the detection time of the previously proposed models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源