论文标题

关于高级代数I的分销性:比斯潘斯的通用性能

On distributivity in higher algebra I: The universal property of bispans

论文作者

Elmanto, Elden, Haugseng, Rune

论文摘要

我们具有违反(回调)和协方差(推送)功能的结构可以由启动器($ \ infty $ - )类别的跨度(或对应关系)编码。在本文中,我们研究了更复杂的设置,其中我们有两个推动力(一个“添加剂”和一个“乘法”),可以满足分布性关系。可以用比斯潘(或多项式图)来描述此类结构。我们表明,存在$(\ infty,2)$ - 以通用属性为特征的比斯班人类别:它们是由$ \ infty $ - 跨性别者的核心函数,这些跨度的跨度分类为左后背和某些规范的2morphism(编码基本变化和分布性)是可倒置的。这提供了一种通用的方法,可以从Bispans获取函子,该方法等于将“单形”结构升级到“环状”。例如,对称单体$ \ infty $ - 类别可以描述为有限集的跨越产品保护函子,如果张量产品与有限的共同构造兼容,则使用副型和张量产品,我们的通用性属性可提供规范的半导体结构。更有趣的是,我们作为比斯班班(Bispans in Bivariant Spectra)在比斯潘斯(Bispans in Bivariant Spectra)上编码添加剂和乘法转移,以有限的$ g $ set的函数扩展,扩展了在动机中的有限étale映射的规范,向某些Bispans的函数中的某些Bispans的函数扩展了Bispans的某些Bispans,并使用$ \ Mathrm {perf} $ x $ x $ x $ x-specte specte specte spectee specte spectept}(x)除了通常的回调图和推动图像外,有限的典型典型地图的乘法推动力。将其与Barwick,Glasman,Mathew和Nikolaus构建的$ K $理论的多项式功能相结合,我们获得了代数$ K $ - 理论光谱的规范。

Structures where we have both a contravariant (pullback) and a covariant (pushforward) functoriality that satisfy base change can be encoded by functors out of ($\infty$-)categories of spans (or correspondences). In this paper we study the more complicated setup where we have two pushforwards (an "additive" and a "multiplicative" one), satisfying a distributivity relation. Such structures can be described in terms of bispans (or polynomial diagrams). We show that there exist $(\infty,2)$-categories of bispans, characterized by a universal property: they corepresent functors out of $\infty$-categories of spans where the pullbacks have left adjoints and certain canonical 2-morphisms (encoding base change and distributivity) are invertible. This gives a universal way to obtain functors from bispans, which amounts to upgrading "monoid-like" structures to "ring-like" ones. For example, symmetric monoidal $\infty$-categories can be described as product-preserving functors from spans of finite sets, and if the tensor product is compatible with finite coproducts our universal property gives the canonical semiring structure using the coproduct and tensor product. More interestingly, we encode the additive and multiplicative transfers on equivariant spectra as a functor from bispans in finite $G$-sets, extend the norms for finite étale maps in motivic spectra to a functor from certain bispans in schemes, and make $\mathrm{Perf}(X)$ for $X$ a spectral Deligne--Mumford stack a functor of bispans using a multiplicative pushforward for finite étale maps in addition to the usual pullback and pushforward maps. Combining this with the polynomial functoriality of $K$-theory constructed by Barwick, Glasman, Mathew, and Nikolaus, we obtain norms on algebraic $K$-theory spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源