论文标题

重新归一化组的改进有效潜力:EFT方法

Renormalization Group Improvement of the Effective Potential: an EFT Approach

论文作者

Manohar, Aneesh V., Nardoni, Emily

论文摘要

我们采用有效的野外理论(EFT)方法来计算重新归一化组提高了具有较大质量层次结构的理论的有效潜力。我们的方法允许人们使用重新归一化组进化来计算质量比的系统扩展中的有效潜力,并计算质量比的较大对数。有效的电位是一粒子不可还原图(1PI)的总和,但有关哪些图在与EFT匹配后丢失了1pi的信息,因为重线会缩小到一定程度。因此,我们引入了t条件,代替1PI条件,并使用重新归一化组提高了t的t端值来计算有效电位。我们解释了为什么使用EFT计算的有效电位与EFT的有效潜力不同。我们使用$ o(n)$模型来说明我们的方法,这是一个在不间断和破碎的相位中的两个标量的理论,以及希格斯扬川模型。我们通过集成单循环$β$函数获得的领先gog结果,在显式两循环计算中正确地重现了日志方项。我们的方法没有金石玻色子红外发散问题。

We apply effective field theory (EFT) methods to compute the renormalization group improved effective potential for theories with a large mass hierarchy. Our method allows one to compute the effective potential in a systematic expansion in powers of the mass ratio, as well as to sum large logarithms of mass ratios using renormalization group evolution. The effective potential is the sum of one-particle irreducible diagrams (1PI) but information about which diagrams are 1PI is lost after matching to the EFT, since heavy lines get shrunk to a point. We therefore introduce a tadpole condition in place of the 1PI condition, and use the renormalization group improved value of the tadpole in computing the effective potential. We explain why the effective potential computed using an EFT is not the same as the effective potential of the EFT. We illustrate our method using the $O(N)$ model, a theory of two scalars in the unbroken and broken phases, and the Higgs-Yukawa model. Our leading-log result, obtained by integrating the one-loop $β$-functions, correctly reproduces the log-squared term in explicit two-loop calculations. Our method does not have a Goldstone boson infrared divergence problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源