论文标题

Fisher-Rao在协方差锥上的距离

Fisher-Rao distance on the covariance cone

论文作者

Wells, Joseph, Cook, Mary, Pine, Karleigh, Robinson, Benjamin D.

论文摘要

统计流形的Fisher-Rao测量距离由零均值的P维多元高斯人组成,在几个地方都没有证明(例如史蒂文·史密斯(Steven Smith)的“协方差,子空间和内在的cramer-rao界限”)。在本文中,我们使用基本的Riemannian几何形状给出了证明。

The Fisher-Rao geodesic distance on the statistical manifold consisting of zero-mean p-dimensional multivariate Gaussians appears without proof in several places (such as Steven Smith's "Covariance, Subspace, and Intrinsic Cramer-Rao Bounds"). In this paper, we give a proof using basic Riemannian geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源