论文标题

使用深度学习的组织病理学图像中的墨水标记分段

Ink Marker Segmentation in Histopathology Images Using Deep Learning

论文作者

Maleki, Danial, Afshari, Mehdi, Babaie, Morteza, Tizhoosh, H. R.

论文摘要

由于机器视觉的最新进展,数字病理学引起了极大的关注。组织病理学图像明显丰富了视觉信息。组织载玻片图像用于疾病诊断。研究人员研究了许多方法来处理组织病理学图像并促进快速可靠的诊断;因此,高质量幻灯片的可用性变得至关重要。当载玻片被病理学家标记以描绘出感兴趣的区域时,图像的质量可能会受到负面影响。例如,在最大的公共组织病理学数据集之一中,癌症基因组地图集(​​TCGA),大约$ 12 \%的数字化幻灯片受到手动描述的影响。为了处理这些开放访问的幻灯片图像和其他存储库来设计和验证新方法,用于检测图像标记区域的算法对于避免将组织像素与墨水像素与墨水像素混淆,用于计算机方法。在这项研究中,我们建议通过深层网络将病理斑块的墨水标记区域分割。创建了一个$ 4,305 $补丁的$ 79 $全幻灯片图像的数据集,并培训了不同的网络。最后,结果显示了具有EffiecentNet-B3的FPN模型,因为发现主链是出色的配置,F1分数为$ 94.53 \%$。

Due to the recent advancements in machine vision, digital pathology has gained significant attention. Histopathology images are distinctly rich in visual information. The tissue glass slide images are utilized for disease diagnosis. Researchers study many methods to process histopathology images and facilitate fast and reliable diagnosis; therefore, the availability of high-quality slides becomes paramount. The quality of the images can be negatively affected when the glass slides are ink-marked by pathologists to delineate regions of interest. As an example, in one of the largest public histopathology datasets, The Cancer Genome Atlas (TCGA), approximately $12\%$ of the digitized slides are affected by manual delineations through ink markings. To process these open-access slide images and other repositories for the design and validation of new methods, an algorithm to detect the marked regions of the images is essential to avoid confusing tissue pixels with ink-colored pixels for computer methods. In this study, we propose to segment the ink-marked areas of pathology patches through a deep network. A dataset from $79$ whole slide images with $4,305$ patches was created and different networks were trained. Finally, the results showed an FPN model with the EffiecentNet-B3 as the backbone was found to be the superior configuration with an F1 score of $94.53\%$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源