论文标题

转移学习提高了MI BCI模型的分类精度

Transfer Learning improves MI BCI models classification accuracy in Parkinson's disease patients

论文作者

Miladinović, Aleksandar, Ajčević, Miloš, Busan, Pierpaolo, Jarmolowska, Joanna, Silveri, Giulia, Mezzarobba, Susanna, Battaglini, Piero Paolo, Accardo, Agostino

论文摘要

基于汽车的BCI(MI-BCI)神经康复可以提高运动能力并减轻帕金森氏病患者的缺陷症状。需要先进的运动构想BCI方法来克服此类患者的准确性和与时间相关的MI BCI校准挑战。在这项研究中,我们提出了基于课际转移学习的多课程FBCSP(MSFBCSP),并研究了与单课的FBSCP相比的性能。这项研究的主要结果是,与PD患者的单会FBCSP相比,提议的MSFBCSP获得了明显提高的精度(中位数为81.3%,范围为41.2-100.0%,分别为61.1%,范围为25.0-100.0.0%; p <0.001)。总之,这项研究提出了一种基于转移学习的基于多学业的方法,该方法允许在PD患者对PD患者进行的MI BCI中显着提高校准精度。

Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor ability and reduce the deficit symptoms in Parkinson's Disease patients. Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and time-related MI BCI calibration challenges in such patients. In this study, we proposed a Multi-session FBCSP (msFBCSP) based on inter-session transfer learning and we investigated its performance compared to the single-session based FBSCP. The main result of this study is the significantly improved accuracy obtained by proposed msFBCSP compared to single-session FBCSP in PD patients (median 81.3%, range 41.2-100.0% vs median 61.1%, range 25.0-100.0%, respectively; p<0.001). In conclusion, this study proposes a transfer learning-based multi-session based FBCSP approach which allowed to significantly improve calibration accuracy in MI BCI performed on PD patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源