论文标题

AutoAtlas:3D无监督分区和代表性学习的神经网络

AutoAtlas: Neural Network for 3D Unsupervised Partitioning and Representation Learning

论文作者

Mohan, K. Aditya, Kaplan, Alan D.

论文摘要

我们提出了一种称为Autoatlas的新型神经网络结构,用于完全无监督的分区和3D脑磁共振成像(MRI)体积的表示。 AutoAtlas由两个神经网络组件组成:一个基于卷中本地纹理的多标签分区的神经网络,以及第二个神经网络,用于压缩每个分区中包含的信息。我们通过优化旨在促进每个分区的准确重建的损失函数同时训练这两个组件,同时鼓励空间平滑和连续的分区,并阻止相对较小的分区。我们表明,分区适应了脑组织特定特定的结构变化,同时始终出现在受试者的相似空间位置。 Autoatlas还产生非常低维的功能,代表每个分区的本地纹理。我们使用派生的特征表示,证明了与每个受试者相关的元数据的预测,并使用从FreeSurfer解剖分析中得出的特征将结果与预测进行了比较。由于我们的特征本质上与不同的分区相关,因此我们可以映射感兴趣的值,例如特定于分区特征的重要性得分在大脑中以进行可视化。

We present a novel neural network architecture called AutoAtlas for fully unsupervised partitioning and representation learning of 3D brain Magnetic Resonance Imaging (MRI) volumes. AutoAtlas consists of two neural network components: one neural network to perform multi-label partitioning based on local texture in the volume, and a second neural network to compress the information contained within each partition. We train both of these components simultaneously by optimizing a loss function that is designed to promote accurate reconstruction of each partition, while encouraging spatially smooth and contiguous partitioning, and discouraging relatively small partitions. We show that the partitions adapt to the subject specific structural variations of brain tissue while consistently appearing at similar spatial locations across subjects. AutoAtlas also produces very low dimensional features that represent local texture of each partition. We demonstrate prediction of metadata associated with each subject using the derived feature representations and compare the results to prediction using features derived from FreeSurfer anatomical parcellation. Since our features are intrinsically linked to distinct partitions, we can then map values of interest, such as partition-specific feature importance scores onto the brain for visualization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源