论文标题

用户关心广告的性能成本吗?探索应用程序内广告的性能成本对用户体验的影响

Do Users Care about Ad's Performance Costs? Exploring the Effects of the Performance Costs of In-App Ads on User Experience

论文作者

Gao, Cuiyun, Zeng, Jichuan, Sarro, Federica, Lo, David, King, Irwin, Lyu, Michael R.

论文摘要

上下文:应用内广告是许多移动应用程序的主要收入来源。对于应用程序开发人员而言,广告(广告费用)的成本(广告费用)不可忽略,以确保良好的用户体验和连续的利润。先前的研究主要集中于解决广告产生的隐藏性能成本,包括记忆,CPU,数据流量和电池的消耗。但是,没有研究用户对我们知识的广告性能成本的看法。目的:填补这一空白并更好地了解应用程序内广告的性能成本对用户体验的影响,我们对分析用户对广告性能成本的担忧进行了研究。方法:首先,我们提出了Rankminer,一种量化用户对特定工作(包括绩效成本)的关注的方法。然后,根据20个主题应用程序的使用迹线,我们衡量广告的性能成本。最后,我们对性能成本和量化用户的疑虑进行关联分析,以探讨用户是否为更高的性能成本投诉。结果:我们的发现包括以下内容:(1)RankMiner可以通过提高214%和2.5%的Pearson相关系数(两个变量之间的度量计算相关性)和NDCG分数(用于计算准确性确定性问题的度量),可以更好地量化用户的关注点。 (2)带有ADS版本的性能成本在统计上明显大于效果尺寸可忽略不计的NOADS版本的性能; (3)用户对广告的电池成本感到不可思议,并且对广告的数据流量成本不敏感。结论:我们的研究与以前有关应用程序内广告的工作补充,并且可以鼓励开发人员更多地注意减轻最终用户最牢固的性能成本,例如电池成本。

Context: In-app advertising is the primary source of revenue for many mobile apps. The cost of advertising (ad cost) is non-negligible for app developers to ensure a good user experience and continuous profits. Previous studies mainly focus on addressing the hidden performance costs generated by ads, including consumption of memory, CPU, data traffic, and battery. However, there is no research onanalyzing users' perceptions of ads' performance costs to our knowledge. Objective: To fill this gap and better understand the effects of performance costs of in-app ads on user experience, we conduct a study on analyzing user concerns about ads' performance costs. Method: First, we propose RankMiner, an approach to quantify user concerns about specific appissues, including performance costs. Then, based on the usage traces of 20 subject apps, we measure the performance costs of ads. Finally, we conduct correlation analysis on the performance costs and quantified user concerns to explore whether users complain more for higher performance costs. Results: Our findings include the following: (1) RankMiner can quantify users' concerns better than baselines by an improvement of 214% and 2.5% in terms of Pearson correlation coefficient (a metricfor computing correlations between two variables) and NDCG score (a metric for computing accuracyin prioritizing issues), respectively. (2) The performance costs of the with-ads versions are statistically significantly larger than those of no-ads versions with negligible effect size; (3) Users are moreconcerned about the battery costs of ads, and tend to be insensitive to ads' data traffic costs. Conclusion: Our study is complementary to previous work on in-app ads, and can encourage devel-opers to pay more attention to alleviating the most user-concerned performance costs, such as battery cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源