论文标题
在红移1-3.5的镜头镜头中的湍流气体中
Turbulent Gas in Lensed Planck-selected Starbursts at redshifts 1-3.5
论文作者
论文摘要
高红移(1 <z <3)处的尘土飞扬的星系是宇宙中最激烈的恒星形成区域。这些过程的关键方面是气体加热和冷却机制。尽管众所周知,这些星系是气体丰富的,但对气体激发条件知之甚少。在这里,我们在\ textit {planck}卫星(lps)以z〜1.1-3.5识别的24个强烈镜头形成星系的样本中检查了这些过程。我们分析了162个CO旋转过渡(从浓度= 1-12)和37个原子碳良好结构线([CI]),以表征LPS样品中气体的物理条件。我们使用两个不同的非LTE辐射转移模型同时拟合CO和[CI]线以及尘埃连续发射。第一个模型代表两个组分气体密度,而第二个模型假定湍流驱动的对数正态密度分布。这些LP是有史以来观察到的最丰富,红外(IR)的发光星系($μ_{\ rm l} $ l $ _ {\ rm ir(8-1000μm)} \ sim 10^{13-14.6} $ \ lsun; 1.2 \ times 10^{12} $ \ msun,带有$μ_ {\ rm l} \ sim 10-30 $平均镜头放大系数)。我们的结果表明,LP中存在的动荡ISM可以通过高动荡的速度分散($ <ΔV_{\ rm turb}> \ sim 100 $ \ kms)和气体动态温度比率$ <t _ {少数KPC。我们推测分子气体质量和IR光度的平均表面密度$σ_{\ rm m _ {\ rm ism}} $ $ \ sim 10^{3-4} $ \ msun pc $^{ - 2} $ \ lsun kpc $^{ - 2} $,均来自恒星机械反馈和稳定的动量注入,从而产生了乳层间气体的积聚。
Dusty star-forming galaxies at high redshift (1 < z < 3) represent the most intense star-forming regions in the Universe. Key aspects to these processes are the gas heating and cooling mechanisms. Although it is well known that these galaxies are gas-rich, little is known about the gas excitation conditions. Here we examine these processes in a sample of 24 strongly lensed star-forming galaxies identified by the \textit{Planck} satellite (LPs) at z ~ 1.1 - 3.5. We analyze 162 CO rotational transitions (ranging from Jupper = 1 - 12) and 37 atomic carbon fine-structure lines ([CI]) in order to characterize the physical conditions of the gas in sample of LPs. We simultaneously fit the CO and [CI] lines, and the dust continuum emission, using two different non-LTE, radiative transfer models. The first model represents a two component gas density, while the second assumes a turbulence driven log-normal gas density distribution. These LPs are among the most gas-rich, infrared (IR) luminous galaxies ever observed ($μ_{\rm L}$L$_{\rm IR(8-1000μm) } \sim 10^{13-14.6} $\Lsun; $< μ_{\rm L}$M$_{\rm ISM}> = 2.7 \pm 1.2 \times 10^{12}$ \Msun, with $μ_{\rm L} \sim 10-30$ the average lens magnification factor). Our results suggest that the turbulent ISM present in the LPs can be well-characterized by a high turbulent velocity dispersion ($<ΔV_{\rm turb}> \sim 100 $ \kms) and gas kinetic temperature to dust temperature ratios $<T_{\rm kin}$/$T_{\rm d}> \sim 2.5$, sustained on scales larger than a few kpc. We speculate that the average surface density of the molecular gas mass and IR luminosity $Σ_{\rm M_{\rm ISM}}$ $\sim 10^{3 - 4}$ \Msun pc$^{-2}$ and $Σ_{\rm L_{\rm IR}}$ $\sim 10^{11 - 12}$ \Lsun kpc$^{-2}$, arise from both stellar mechanical feedback and a steady momentum injection from the accretion of intergalactic gas.