论文标题

与高斯重量的图形数据库对齐的尖锐阈值

Sharp threshold for alignment of graph databases with Gaussian weights

论文作者

Ganassali, Luca

论文摘要

我们研究了加权图(或矩阵)数据库对齐中重建的基本限制。我们考虑了两个图的模型,其中$π^*$是种植统一的置换,所有对边权重$(a_ {i,j},b_ {π^*(i),π^*(j)})对均值为零,单位方差和相关参数$ρ\在[0,1] $中的Gaussian变量对。 We prove that there is a sharp threshold for exact recovery of $π^*$: if $n ρ^2 \geq (4+ε) \log n + ω(1)$ for some $ε>0$, there is an estimator $\hatπ$ -- namely the MAP estimator -- based on the observation of databases $A,B$ that achieves exact reconstruction with high probability.相反,如果$nρ^2 \ leq 4 \ log n- \ log \ log \ log n -ω(1)$,则任何估计器$ \hatπ$ veruies $ \hatπ=π=π$ a有可能$ o(1)$。 该结果表明,精确恢复的信息理论阈值与Wu等人最近的工作中获得的检测相同。 (2020):换句话说,对于高斯加权图对准,重建问题并不比检测更难。尽管对矢量形的数据库对齐的重建任务已经很好地理解了(这是$(u_i,v_,v_ {π^*(i)})_ {1 \ leq i \ leq n} $ $(u_i,u_i,v_ v_ v_ {π^*(i)} $ $ \ mathbb {r}^{d_u} \ times \ times \ mathbb {r}^{d_v} $),其用于Graph(或矩阵)数据库的公式带来了一个截然不同的问题,这些问题将硬阶段猜测为宽。 证明基于对MAP估计器和第二次矩方法的分析,以及对排列能量的相关结构的研究。

We study the fundamental limits for reconstruction in weighted graph (or matrix) database alignment. We consider a model of two graphs where $π^*$ is a planted uniform permutation and all pairs of edge weights $(A_{i,j}, B_{π^*(i),π^*(j)})_{1 \leq i<j \leq n}$ are i.i.d. pairs of Gaussian variables with zero mean, unit variance and correlation parameter $ρ\in [0,1]$. We prove that there is a sharp threshold for exact recovery of $π^*$: if $n ρ^2 \geq (4+ε) \log n + ω(1)$ for some $ε>0$, there is an estimator $\hatπ$ -- namely the MAP estimator -- based on the observation of databases $A,B$ that achieves exact reconstruction with high probability. Conversely, if $n ρ^2 \leq 4 \log n - \log \log n - ω(1)$, then any estimator $\hatπ$ verifies $\hatπ=π$ with probability $o(1)$. This result shows that the information-theoretic threshold for exact recovery is the same as the one obtained for detection in a recent work by Wu et al. (2020): in other words, for Gaussian weighted graph alignment, the problem of reconstruction is not more difficult than that of detection. Though the reconstruction task was already well understood for vector-shaped database alignment (that is taking signal of the form $(u_i, v_{π^*(i)})_{1 \leq i\leq n}$ where $(u_i, v_{π^*(i)})$ are i.i.d. pairs in $\mathbb{R}^{d_u} \times \mathbb{R}^{d_v}$), its formulation for graph (or matrix) databases brings a drastically different problem for which the hard phase is conjectured to be wide. The proofs build upon the analysis of the MAP estimator and the second moment method, together with the study of the correlation structure of energies of permutations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源