论文标题

密歇根州:肖像编辑的多输入条件发型图像

MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait Editing

论文作者

Tan, Zhentao, Chai, Menglei, Chen, Dongdong, Liao, Jing, Chu, Qi, Yuan, Lu, Tulyakov, Sergey, Yu, Nenghai

论文摘要

尽管gan的面部图像产生最近成功,但由于其几何形状和外观的复杂性不足,有条件的头发编辑仍然具有挑战性。在本文中,我们介绍了密歇根州(多输入条件的头发图像gan),这是一种新型的有条件图像生成方法,用于交互式肖像处理。为了提供对每个主要头发视觉因素的用户控制,我们将头发明确地将头发分解为四个正交属性,包括形状,结构,外观和背景。对于每个人,我们设计一个相应的条件模块,以表示,处理和转换用户输入,并以尊重不同视觉属性的本质的方式调节图像生成管道。所有这些条件模块都与骨干发电机集成在一起,以形成最终的端到端网络,该网络允许从多个用户输入中产生完全条件的头发。在它上,我们还建立了一个交互式肖像头发编辑系统,该系统可以通过投影直觉和高级用户输入(例如彩绘口罩,指导笔触或参考照片)来直接操纵头发。通过广泛的实验和评估,我们证明了我们在结果质量和用户可控性方面的优越性。该代码可从https://github.com/tzt101/michigan获得。

Despite the recent success of face image generation with GANs, conditional hair editing remains challenging due to the under-explored complexity of its geometry and appearance. In this paper, we present MichiGAN (Multi-Input-Conditioned Hair Image GAN), a novel conditional image generation method for interactive portrait hair manipulation. To provide user control over every major hair visual factor, we explicitly disentangle hair into four orthogonal attributes, including shape, structure, appearance, and background. For each of them, we design a corresponding condition module to represent, process, and convert user inputs, and modulate the image generation pipeline in ways that respect the natures of different visual attributes. All these condition modules are integrated with the backbone generator to form the final end-to-end network, which allows fully-conditioned hair generation from multiple user inputs. Upon it, we also build an interactive portrait hair editing system that enables straightforward manipulation of hair by projecting intuitive and high-level user inputs such as painted masks, guiding strokes, or reference photos to well-defined condition representations. Through extensive experiments and evaluations, we demonstrate the superiority of our method regarding both result quality and user controllability. The code is available at https://github.com/tzt101/MichiGAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源