论文标题
自适应半监督意图地下中和控制中风的动力手矫形器
Adaptive Semi-Supervised Intent Inferral to Control a Powered Hand Orthosis for Stroke
论文作者
论文摘要
为了在功能背景下提供治疗,可穿戴机器人矫形器的控制需要健壮和直观。我们以前曾引入一种直观的,用户驱动的,基于EMG的方法来操作机器人手矫形器,但是训练控制概念漂移(输入信号的变化)的控制过程给用户带来了重大负担。在本文中,我们探讨了半监督的学习,作为控制中风受试者的动力手矫形器的范式。据我们所知,这是对矫形应用的首次使用半监督学习。具体而言,我们提出了一种基于分歧的半衰期算法,用于根据多模式的同侧感应来处理内部概念漂移。我们评估了算法对从五个中风受试者收集的数据的性能。我们的结果表明,所提出的算法有助于使用未标记的数据适应该设备的内部漂移,并减轻了对用户的训练负担。我们还通过功能任务验证了我们提出的算法的可行性;在这些实验中,两个受试者成功完成了选择任务的多个实例。
In order to provide therapy in a functional context, controls for wearable robotic orthoses need to be robust and intuitive. We have previously introduced an intuitive, user-driven, EMG-based method to operate a robotic hand orthosis, but the process of training a control that is robust to concept drift (changes in the input signal) places a substantial burden on the user. In this paper, we explore semi-supervised learning as a paradigm for controlling a powered hand orthosis for stroke subjects. To the best of our knowledge, this is the first use of semi-supervised learning for an orthotic application. Specifically, we propose a disagreement-based semi-supervision algorithm for handling intrasession concept drift based on multimodal ipsilateral sensing. We evaluate the performance of our algorithm on data collected from five stroke subjects. Our results show that the proposed algorithm helps the device adapt to intrasession drift using unlabeled data and reduces the training burden placed on the user. We also validate the feasibility of our proposed algorithm with a functional task; in these experiments, two subjects successfully completed multiple instances of a pick-and-handover task.