论文标题

关于傅立叶乘数的增长

On the growth of Fourier multipliers

论文作者

Battseren, Bat-Od

论文摘要

我们在本地紧凑的$ g $的傅立叶代数$ a(g)$中定义了一系列功能,即驯服的削减,可满足某些融合和增长条件。这种新的考虑使我们能够给一个团队,承认傅立叶乘数并非完全有限。此外,我们表明感应地图$ mA(γ)\ rightarrow ma(g)$并不总是连续的。我们还展示了Liao的属性$(t_ {schur},g,k)$反对驯服。提供了一些示例。

We define a sequence of functions, namely tame cuts, in the Fourier algebra $A(G)$ of a locally compact group $G$, that satisfies certain convergence and growth conditions. This new consideration allows us to give a group admitting a Fourier multiplier that is not completely bounded. Furthermore, we show that the induction map $MA(Γ)\rightarrow MA(G)$ is not always continuous. We also show how Liao's Property $(T_{Schur}, G, K)$ opposes tame cuts. Some examples are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源