论文标题

使用聚合的多分辨率分割特征对胸部CT进行弱监督的3D分类

Weakly Supervised 3D Classification of Chest CT using Aggregated Multi-Resolution Deep Segmentation Features

论文作者

Saha, Anindo, Tushar, Fakrul I., Faryna, Khrystyna, D'Anniballe, Vincent M., Hou, Rui, Mazurowski, Maciej A., Rubin, Geoffrey D., Lo, Joseph Y.

论文摘要

由于病例级注释,弱监督的CT成像的疾病分类受到较差的定位,即使进行积极的扫描也可以沿多个平面持有数百至数千个负面切片。此外,尽管深度学习细分和分类模型从同一目标类别中提取了解剖特征的明显独特组合,但它们通常被视为计算机辅助诊断(CAD)管道中的两个独立过程,几乎没有功能重复使用。在这项研究中,我们提出了一个医疗分类器,该分类器利用通过多分辨率分割特征图所学的语义结构概念,以指导弱监督的胸部CT体积的3D分类。此外,对两种不同类型的特征聚合进行了比较分析,以探索围绕特征融合的巨大可能性。使用基于规则的模型,使用1593个扫描的数据集,我们训练双阶段卷积神经网络(CNN)来执行四种代表性疾病(肺炎,肺炎,肺炎/腹部疾病,弥撒,弥撒,弥撒,肿瘤)的器官细分和二进制分类。具有分割和分类的单独阶段的基线模型导致AUC为0.791。使用相同的超参数,使用静态和动态特征聚集的连接体系结构分别提高了AUC的0.832和0.851。这项研究以两种关键方式推进了该领域。首先,案例级报告数据用于弱监督器官多种,同时疾病的3D CT分类器。其次,分割和分类模型与两种不同的特征聚合策略相连,以增强分类性能。

Weakly supervised disease classification of CT imaging suffers from poor localization owing to case-level annotations, where even a positive scan can hold hundreds to thousands of negative slices along multiple planes. Furthermore, although deep learning segmentation and classification models extract distinctly unique combinations of anatomical features from the same target class(es), they are typically seen as two independent processes in a computer-aided diagnosis (CAD) pipeline, with little to no feature reuse. In this research, we propose a medical classifier that leverages the semantic structural concepts learned via multi-resolution segmentation feature maps, to guide weakly supervised 3D classification of chest CT volumes. Additionally, a comparative analysis is drawn across two different types of feature aggregation to explore the vast possibilities surrounding feature fusion. Using a dataset of 1593 scans labeled on a case-level basis via rule-based model, we train a dual-stage convolutional neural network (CNN) to perform organ segmentation and binary classification of four representative diseases (emphysema, pneumonia/atelectasis, mass and nodules) in lungs. The baseline model, with separate stages for segmentation and classification, results in AUC of 0.791. Using identical hyperparameters, the connected architecture using static and dynamic feature aggregation improves performance to AUC of 0.832 and 0.851, respectively. This study advances the field in two key ways. First, case-level report data is used to weakly supervise a 3D CT classifier of multiple, simultaneous diseases for an organ. Second, segmentation and classification models are connected with two different feature aggregation strategies to enhance the classification performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源